CENTRAL UNIVERSITY OF HARYANA

(Established under the Central Universities Act, 2009) (NAAC Accredited 'A' Grade)

Based upon CBCS, LOCF and NEP-2020 Curriculum and Syllabi of M.Sc. Physics

2022-24

DEPARTMENT OF PHYSICS & ASTROPHYSICS SCHOOL OF BASIC SCIENCES

Approved by : BOS School Board Academic Council

Approval Status: Approved Approved Approval Date: 05-07-2023 18-07-2023

Table of Contents

Sr.	Contents	Page
No.		No.
	VISION AND MISSION	3
1	BACKGROUND	
	i) NEP-2020 and LOCF an integrated Approach	4
	ii) About the subject	6
	iii) About the Programme (Nature, extent and aims)	6
	iv) Qualification Descriptors (possible career pathways)	7
2	PROGRAMME OUTCOMES (POs)	8
3	PROGRAMME SPECIFIC OUTCOMES (PSOs)	9
4	POSTGRADUATE ATTRIBUTES	9
5	STRUCTURE OF MASTER'S COURSE	10
6	LEARNING OUTCOME INDEX (Mapping of Courses with POs and PSOs)	11
7	SEMESTER-WISE COURSES AND CREDIT	15
	DISTRIBUTION	
8	COURSE-LEVEL LEARNING OUTCOMES	20
9	TEACHING-LEARNING PROCESS	135
10	IMPLEMENTATION OF BLENDED LEARNING	143
11	ASSESSMENT AND EVALUATION	143
12	KEYWORDS	144
13	REFERENCES	144
14	APPENDICES	145

VISION AND MISSION

i) Vision and Mission of the University

Vision

To develop enlightened citizenship of a knowledge society for peace and prosperity of individuals, nation and the world, through promotion of innovation, creative endeavours, and scholarly inquiry.

Mission

To serve as a beacon of change, through multi-disciplinary learning, for creation of knowledge community, by building a strong character and nurturing a value-based transparent work ethics, promoting creative and critical thinking for holistic development and self-sustenance for the people of India. The University seeks to achieve this objective by cultivating an environment of excellence in teaching, research and innovation in pure and applied areas of learning.

ii) Vision and Mission of the Department

Vision

To establish a platform for the dissemination and creation of knowledge through teaching andresearch in Physics and Astrophysics at various levels. To help create a scientific society which encourages logical thinking.

Mission

- To offer a state of art Academic Programs in Physics and interdisciplinary areas.
- To create intellectual property through innovations, quality research publications and patents
- To create state of art research laboratories which will facilitate the research of Central University of Haryana as well as other academic institutions.

1. BACKGROUND

i) NEP-2020 and LOCF an integrated Approach

Considering the curricular reforms as instrumental for desired learning outcomes, all the academic departments of Central University of Haryana made a rigorous attempt to revise the curriculum of undergraduate and postgraduate programmes in alignment with National Education Policy-2020 and UGC Quality Mandate for Higher Education Institutions-2021. The process of revising the curriculum could be prompted with the adoption of "Comprehensive Roadmap for Implementation of NEP-2020" in 32nd meeting of the Academic Council of the University held on April 23, 2021. The Roadmap identified the key features of the Policy and elucidated the Action Plan with well-defined responsibilities and indicative timeline for major academic reforms.

The process of revamping the curriculum started with the series of webinars and discussions conducted by the University to orient the teachers about the key features of the Policy, enabling them to revise the curriculum in sync with the Policy. Proper orientation of the faculty about the vision and provisions of NEP-2020 made it easier for them to appreciate and incorporate the vital aspects of the Policy in the revised curriculum focused on 'creating holistic, thoughtful, creative and well-rounded individuals equipped with the key 21st century skills' for the 'development of an enlightened, sociallyconscious, knowledgeable, and skilled nation'.

With NEP-2020 in background, the revised curricula articulate the spirit of the policy by emphasising upon—integrated approach to learning; innovative pedagogies and assessment strategies; multidisciplinary and cross-disciplinary education; creative and critical thinking; ethical and Constitutional values through value-based courses; 21st century capabilities across the range of disciplines through life skills, entrepreneurial and professional skills; community and constructive public engagement; social, moral and environmental awareness; Organic Living and Global Citizenship Education (GCED); holistic, inquiry-based, discovery-based, discussion-based, and analysis-based learning; exposure to Indian knowledge system, cultural traditions and classical literature through relevant courses offering 'Knowledge of India'; fine blend of modern pedagogies with indigenous and traditional ways of learning; flexibility in course choices; student-centric participatory learning; imaginative and flexible curricular structures to enable creative combination of disciplines for study; offering multiple entry and exit points initially in undergraduate programmes; alignment of Vocational courses with the International Standard Classification of Occupations

.

maintained by the International Labour Organization; breaking the silos of disciplines; integration of extra-curricular and curricular aspects; exploring internships with local industry, businesses, artists and crafts persons; closer collaborations between industry and higher education institutions for technical, vocational and science programmes; and formative assessment tools to be aligned with the learning outcomes, capabilities, and dispositions as specified for each course. In case of UG programmes in Engineering and Vocational Studies, it was decided that the departments shall incorporate pertinent NEP recommendations while complying with AICTE, NBA, NSQF, International Standard Classification of Occupations, Sector Skill Council and other relevant agencies/sources. The University has also developed consensus on adoption of Blended Learning with40% component of online teaching and 60% face to face classes for each programme.

The revised curricula of various programmes could be devised with concerted efforts of the faculty, Heads of the Departments and Deans of Schools of Study. The draft prepared by each department was discussed in series of discussion sessions conducted at Department, School and the University level. The leadership of the University has been a driving force behind the entire exercise of developing the uniform template and structure for the revised curriculum. The Vice Chancellor of the University conducted series of meetings with Heads and Deans to deliberate upon the vital parameters of the revised curriculum to formulate a uniform template featuring Background, Programme Outcomes, Programme Specific Outcomes, Postgraduate Attributes, Structure of Masters Course, Learning Outcome Index, Semester-wise Courses and Credit Distribution, Course-level Learning Outcomes, Teaching-Learning Process, Blended Learning, Assessment and Evaluation, Keywords, References and Appendices. The experts of various Boards of Studies and School Boards contributed to a large extent in giving the final shape to the revised curriculum of each programme.

To ensure the implementation of curricular reforms envisioned in NEP-2020, the University has decided to implement various provisions in a phased manner. Accordingly, the curriculum may be reviewed annually.

ii) About the Subject

Physics is the natural science that studies the matter, its motion and behavior through space and time, and the related entities of energy and force. Physics is one of the most fundamental scientific disciplines

and its main goal is to understand the behavior of universe and its characteristics.

Physics uses the scientific method to help uncover the basic principles governing light and matter, and to discover the implications of those laws. It assumes that there are rules by which the universe functions, and that those laws can be at least partially understood by humans. It is also commonly believed that those laws could be used to predict everything about the universe's future if complete information was available about the present state of all light and matter.

On inclusion of Astronomy, the Physics became one of the oldest academic disciplines. Physics intersects with many interdisciplinary areas of research. New ideas in Physics often explain the fundamental mechanisms studied by other branches of science and suggest new avenues of research in academic disciplines such mathematics etc. Advancement in Physics often leads to new technologies.

iii) About the Programme (Nature, extent and aims)

M.Sc. Physics is a two year regular programme. There four semesters in this programme. Each semester is of sixteen weeks duration. Teaching and learning process of M.Sc. Physics involves theory and practical classes along with seminar presentation and research project work.

The curriculum will be taught through formal lectures with the aid of power-point presentations, audio and video tools and other teaching aids can be used as and when required. Emphasis will be given to laboratorywork and visit to National laboratories to give hands on experience to students. Students will be encourage to do semester long project in their own institutes as well as in reputed institutes of National level. Aims of the Programme are as follows

- ➤ Understand the underlying Physics in respective specializations, and, be able to teach and guide successfully
- Introduce advanced ideas and techniques that are applicable in respective fields.
- ➤ Provide the students with a broad spectrum of Physics Courses
- Emphasize the role of Physics in other disciplines such as (Chemical Sciences, Mathematical Sciences, Life Sciences and their applied areas)
- > Develop the ability of the students to observe, perform, analyse and report an experiment

- > Develop the ability of the students to deal with physical models and formulas mathematically
- Equip the students with different practical, intellectual and transferable skills.
- Strengthen the student knowledge of Physics and its applications in real world.
- Provide the student with mathematical and computational tools and models to be used in solving professional problems
- Improve the student's inter disciplinary skills.
- To develop human resources with a solid foundation in theoretical and experimental aspects of respective specializations as a preparation for career in academia and industry.

iv) Qualification Descriptors (possible career pathways)

Upon successful completion of the course, the students receive M.Sc. Degree in the Physics. The postgraduate of Department of Physics and Astrophysics are expected to opt different paths seeking sphere of knowledge and domain of professional work that can fulfill their dreams. Students will be able to demonstrate their knowledge in advance branches of Physics. This will establish a platform over which students can pursue higher studies. The possible career paths for postgraduate in M.Sc. Physics are

- 1. Teaching Assignments
- 2. Scientific Assignments
- 3. Instruments development
- 4. Research and Development in Industries
- 5. Simulation Techniques Development in Science
- 6. Role in Renewable Energy Resources
- 7. University/Institute Administrative Assignments
- 8. Technician in Lasers, Accelerators, Detectors and Electronics
- 9. Astronomer
- 10. Medical Device Designer
- 11. Radiologist

2. PROGRAMME OUTCOMES (POs)

Students enrolled in the Master's Programmes offered by the Departments under the School of Basic Sciences will have the opportunity to learn and master the following components in addition to attain important essential skills and abilities:

PO-No.	Component	Outcomes
PO-1	Basic Knowledge	Capable of delivering basic disciplinary knowledge gained
		during the programme.
PO-2	In-depth Knowledge	Capable of describing advanced knowledge gained during
		the programme.
PO-3	Critical thinking and	Capable of analyzing the results critically and applying
	Problem Solving	acquired knowledge to solve the problems.
	abilities	
PO-4	Creativity and	Capable to identify, formulate, investigate and analyze the
	innovation	scientific problems and innovatively to design and create
		products and solutions to real life problems.
PO-5	Research aptitude and	Ability to develop a research aptitude and apply knowledge
	global competency	to find the solution of burning research problems in the
		concerned and associated fields at global
		level.
PO-6	Holistic and	Ability to gain knowledge with the holistic and
	multidisciplinary	multidisciplinary approach across the fields.
70.7	education	
PO-7	Skills enhancement	Learn specific sets of disciplinary or multidisciplinary
		skills and advanced techniques and apply them for
DO 0		betterment of mankind.
PO-8	Leadership and	Ability to learn and work in a groups and capable of
DO 0	Teamwork abilities	leading a team even.
PO-9	Environmental and	Learn important aspects associated with environmental and
	human health	human health. Ability to develop eco-friendly technologies.
DO 10	awareness	In our looks the must excise all and othical attitude and ability to
PO-10	Ethical thinking and	Inculcate the professional and ethical attitude and ability to
DO 11	Social awareness	relate with social problems.
PO-11	lifelong learning skills and	Ability to learn lifelong learning skills which are important
	***************************************	to provide better opportunities and improve quality of life.
	Entrepreneurship	Capable to establish independent startup/innovation center
		etc.

3. PROGRAMME SPECIFIC OUTCOMES (PSOs)

The post graduates shall be able to realise the following specific outcomes by the end of program studies:

Number	Programme Specific Outcomes
PSO-1	Identify, formulate, and solve Physics problems
PSO-2	Design and conduct experiments, as well as to analyse and interpret data
PSO-3	Apply knowledge of Physics in a different stream of science and to communicate effectively.
PSO-4	Ability to use the techniques, skills, and modern physical tools in real world application.
PSO-5	Engage in life-long learning and will have recognition.

4. Postgraduate Attributes

No.	P.G. Attributes
PGA-1	have the ability to demonstrate advanced independent critical enquiry, analysis and reflection
PGA-2	In-depth knowledge of their specialist discipline(s)
PGA-3	be critical and creative thinkers, with an aptitude for continued self-directed learning
PGA-4	be able to examine critically, synthesize and evaluate knowledge across a broad range of disciplines.
PGA-5	Reach a high level of achievement in writing, research or project activities, problem solving and communication.
PGA-6	have a set of flexible and transferable skills for different types of employment
PGA-7	have a strong sense of intellectual integrity and ethics of scholarship.
PGA-8	be able to initiate and implement constructive change in their communities, including professions and workplaces.

5. STRUCTURE OF MASTER'S COURSE

Total Credits of M.Sc. Physics: 96

Types of Courses	Nature	Total Credits	%
Core Courses(CC)	Compulsory	60	62.5
Elective Courses (EC)	Discipline Centric Elective Courses	0	0
	Discipline Specialized Elective Courses	16	16.6
	Generic Elective Courses	8	8.3
Skilled-based courses/ Self-study based courses	Skill Enhancement Courses	12	12.5

List of Courses (*, **, ***, ****)

6. LEARNING OUTCOME INDEX

6.1A Mapping of Core Courses with PSOs

POs ⇔	PSO1	PSO2	PSO3	PSO4	PSO5
Course					
No. ↓					
1	V		√		V
2	√		√		√
	V		V		V
3	V		V		V
_					
4	$\sqrt{}$	$\sqrt{}$			
5	√	V			V
6	√		√		$\sqrt{}$
7	√ V		√ V		√
8					$\sqrt{}$
9	√ V	√ V	√ V		
			·		
10	V	$\sqrt{}$			
11	√		√	√	
	,		,	,	
12	V		V	V	
13	√	√			√
10	V	V			V
	ı	l	1	1	

14	V	√	V	

6.1B Mapping of Discipline Centric Courses with PSOs

POs ⇒	PSO1	PSO2	PSO3	PSO4	PSO5
Course					
No. ↓					
1	-1				-1
1	√ 			,	V
2	V	V		V	V
3		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
4		V		√	V
5	V		√		V
6		V	√	√	
7	V	V			√
8		V	√	√	
9	V	V	√		
10	V		V		V
11	V		√		
12	V		√		V
13		V	√	√	
14		V	√	√	
15	V		√		
16	V		√		V
17	√		√		√ V
18	√		√		√ V
19	√		√		√ V
20	√	V			
21	√	V		√	
22	√		√	√	
23	√			√	√
24		V		V	

25		V	V	
26	V		V	V
27	V	V		

7. SEMESTER-WISE COURSES AND CREDIT DISTRIBUTION

Note: This scheme supersedes the earlier available schemes before this date.

SEMESTER-I (26-Credits)

Sr. No.	Course No	Course Code	Course Title	L	Т	P	Hr s/ W ee k	Total Cred its
Core	Courses	•						
1	1	SBS PHY 01 101 CC 3104	Mathematical Methods in Physics – I	3	1	0	4	4
2	2	SBS PHY 01 102 CC 3104	Classical Mechanics	3	1	0	4	4
3	3	SBS PHY 01 103 CC 3104	Quantum Mechanics – I	3	1	0	4	4
4	4	SBS PHY 01 104 CC 3104	Semiconductor Devices	3	1	0	4	4
5	5	SBS PHY 01 105 CC 00126	Laboratory-I	0	0	12	12	6

Generic Elective Courses (for students of other Departments)

6	1	SBS PHY 01 101 GEC 2124	Numerical Methods and	2	1	2	7	4
			Programming					
7	2	SBS PHY 01 102 GEC 3104	Modern Optics	3	1	0	4	4
8	3	SBS PHY 01 103 GEC 3104	Physics of Digital	3	1	0	4	4
			Photography					
9	4	SBS PHY 01 104 GEC 2002	Renewable Energy Resources	4	0	0	4	4

SEMESTER-II (26-Credits)

Sr.	Course	Course Code	Course Title	L	T	P	Hr	Total
No.	No						s/	Cred
							W	its
							ee	
Core	e Courses						k	
Core	Courses							
1	6	SBS PHY 01 201 CC 3104	Statistical Mechanics	3	1	0	4	4
2	7		Classical Electrodynamics	3	1	0	4	4
		SBS PHY 01 202 CC 3104						
3	8	SBS PHY 01 203 CC 3104	Mathematical Methods in	3	1	0	4	4
			Physics- II					
4	9		Laboratory II	0	0	12	12	6
		SBS PHY 01 204 CC 00126						
Disc	ipline Cent	ric Elective Courses						
5	1	SBS PHY 01 201 DCEC 3104	Quantum Mechanics – II	3	1	0	4	4
6	2	SBS PHY 01 202 DCEC 3104	Introduction to Astronomy	3	1	0	4	4
			and Astrophysics					
7	3	SBS PHY 01 203 DCEC 3104	Fundamentals of Solar	3	1	0	4	4
			Energy					
8	4	SBS PHY 01 204 DCEC 3104	Accelerator Physics	3	1	0	4	4
9	5	SBS PHY 01 205 DCEC 3104	Radiation Physics	3	1	0	4	4
Disc	ipline Cent	ric Skill based courses						
10	6	SBS PHY 01 206 DCEC 3024	Computational Physics	3	0	2	5	4
11	7	SBS PHY 01 207 DCEC 3104	Analog Electronics	3	1	0	4	4
Gene	eric Electiv	e Courses (for students of other De	partments)					
12	5	SBS PHY 01 201 GEC 3104	Environmental Physics	3	1	0	4	4
13	6	SBS PHY 01 202 GEC 2002	Latex for Humans	1	0	2	3	2

SEMESTER-III (28-Credits)

Sr. No.	Course No	Course Code	Course Title	L	Т	P	H rs / W	Total Cred its
							ee k	
Core	e Courses		•					
1	10	SBS PHY 01 301 CC 3104	Atomic, Molecular Physics and Lasers	3	1	0	4	4
2	11	SBS PHY 01 302 CC 3104	Nuclear Physics	3	1	0	4	4
3	12	SBS PHY 01 303 CC 3104	Solid State Physics	3	1	0	4	4
4	13	SBS PHY 01 304 CC 00126	Laboratory-III	0	0	8	8	4
5	14	SBS PHY 01 305 CC 0202	Seminar Presentation	0	2	0	2	2
6	15	SBS PHY 01 306 CC 2002	Research and Publication Ethics	2	0	0	2	2
Disc	ipline Cent	ric Elective Courses						
5	6	SBS PHY 01 301 DCEC 3104	Physics of Electronic Materials and Devices	3	1	0	4	4
6	7	SBS PHY 01 302 DCEC 3104	Nuclear Reactor Physics	3	1	0	4	4
7	8	SBS PHY 01 303 DCEC 3104	Plasma Physics and Fusion Reactor	3	1	0	4	4
8	9	SBS PHY 01 304 DCEC 3104	Physics of Nanomaterials	3	1	0	4	4
9	10	SBS PHY 01 305 DCEC 3104	General Theory of Relativity	3	1	0	4	4
10	11	SBS PHY 01 306 DCEC 3104	Astrophysics of Stars	3	1	0	4	4
	_	ric Skill based courses						
11	12	SBS PHY 01 307 DCEC 3024	Characterization Techniques for Materials	3	0	2	5	4
12	13	SBS PHY 01 308 DCEC 3104	Digital Electronics and Microprocessor	3	1	0	4	4
13	14	SBS PHY 01 309 DCEC 3104	Programming with Python	3	1	0	4	4

SEMESTER-IV (16-Credits)

Sr. No.	Course No	Course Code	Course Title	L	Т	P	Hr s/ W ee k	Total Cred its
Maj	or Research	h Project						
1	1	SBS PHY 01 401 PROJ 000	Dissertation	0	0	0	16	16
Disc	ipline Cent	ric Elective Courses			ı			l
2	15	SBS PHY 01 401 DCEC 3104	Advanced Nuclear Physics	3	1	0	4	4
3	16	SBS PHY 01 402 DCEC 3104	Particle Physics	3	1	0	4	4
4	17	SBS PHY 01 403 DCEC 3104	Cosmology	3	1	0	4	4
5	28	SBS PHY 01 404 DCEC 3104	Ferroelectricity and Magnetism	3	1	0	4	4
6	19	SBS PHY 01 405 DCEC 3104	Advanced Carbon Materials	3	1	0	4	4
Disc	ipline Cent	ric Skill based courses						
7	20	SBS PHY 01 406 DCEC 3104	Experimental Techniques in Nuclear and Particle Physics	3	1	0	4	4
8	21	SBS PHY 01 407 DCEC 3104	Astronomy Laboratory	3	1	0	4	4
9	22	SBS PHY 01 408 DCEC 3104	Vacuum Science and Thin Film Technology	3	1	0	4	4
10	23	SBS PHY 01 409 DCEC 3104	Minor Project	3	1	0	4	4
11	24	SBS PHY 01 410 DCEC 3104	Introduction to Hydrogen Energy Systems	3	1	0	4	4

Note:

- This GEC* courses offered by the Department can only be taken by the students of other Departments. The students of the Physics Department will take GEC from other Departments.
- The Department may offer more than one discipline centric elective courses (DCECs) depending on specialization and strength of faculty members, and the number of students have to opt one of them for semester II. If class strength is less than 10, then that particular subject will not be offered.
- In semester III, students are required to opt two courses out of the listed DCEC (courses) and Discipline Centric Skill based courses. However, a course will be offered subject to the available specialization and strength of the faculty.
- In semester IV, the students have to opt four out of DCEC (courses) and Discipline Centric Skill based courses from various options offered by the Department depending on the specialization and strength of the faculty.

OF

- > Student may opt for full semester long dissertation work on the campus or outside the campus in some Laboratories/Institutes/Universities of National Importance.
- For carrying out the dissertation work outside the campus, student will have to produce an invitation/acceptance letter from external supervisor by the end of Semester III.
- > Student may complete the dissertation project under the guidance of a supervisor on CUH campus.

17 | Page

- > Student who will pursue the project outside CUH will have one internal supervisor and one external supervisor.
- > Internal supervisor will periodically interact with student and external supervisor. He/She will be responsible for internal assessment of the candidate from time to time.
- > Student will be allowed to work with external supervisor at other outside institutions only after completing all the documentation process at CUH. Students have to follow the timeline strictly issued by Department from time to time.
- > Department will have no financial obligation if student carries out the dissertation work outside CUH.

8. COURSE-LEVEL LEARNING OUTCOMES

Course Structure

$\label{eq:mathematical Methods in Physics I} \ Mathematical \ Methods \ in \ Physics \ I$

Scheme Version:	Name of the subject:	L	T	P	С	Semes	ter:	Contact Hours
V CI SIOII.	Mathematical							per
2022-24	Methods in					I		Week: 4
	Physics-I					(1st Ye	ar)	Total
		3	1	0	4			Hours:
				20	_			60= 45+15
Subject	Applicable to	Evaluation	CIE	30 Marilea		ination	Durat	tion: 3
Code: SBS PHY 01 101	Programs:	(Total	CIE	Marks	hours		- C C	D. C.
CC 3104	M.Sc. Physics	Marks: 100)	TEE	70 Marks	Prere	quisite (oi Cou	rse: B.Sc.
CC 3104		100)	IEE	Wiaiks				
Course	This course has	been develo	ped to	introdu	ce stud	lents to	some	topics of
Description	mathematical Ph	ysics which ar	e direct	tly releva	nt in di	ifferent p	papers	of Physics
	course. It include	es elements of	matrice	s and gro	oup theo	ory, intro	oductio	on to tensor
	algebra, function of a complex variable and calculus along with an introduction						ntroduction	
	to computational techniques and statistical measures used in physics Course.							
Course		Learning about matrices and groups						
Objectives		nderstanding b						
		etting to know					ebra	
		nderstanding N						4 1 41
	After successful	completion o	i the co	ourse tne	e studei	nt will b	e abie	e to do tne
	following:		C1	1:	11.	:	_4:	14
Course	CO101C.1 : To			-	_	raic equa	ations	and to use
Outcomes	group theory for	_	=		-			
Outcomes	CO101C.2 : To					•		ICS.
	CO101C.3 : To s			_		•		
	CO101C.4 : To		-	. •	al and i	understa	nd the	properties
	of a statistical dis	stribution of po	ınt part	icles.				
		COURSE	CVIIA	RIIS				
Unit No.		Content of					Ноп	rs of Each
								Unit
	Matrices and G							_
1	Linear vector spa							15
19 Page	eigenvectors and	eigenvalues, n	natrix d	iagonaliz	ation, s	pecial		

	matrices. Symmetries and groups, multiplication table and representations, permutation group, translation and rotation groups, O(N) and U(N) groups.	
2	Tensors Analysis: Coordinate transformations, scalars, contravariant and covariant vectors, mixed and covariant tensor of second rank, addition, subtraction and contraction of tensors, quotient rule. Christoffel symbols, transformation of Christoffel symbols, Covariant differentiation, Ricci's theorem, divergence, Curl and Laplacian tensor form, Stress and strain tensors, Hook's law in tensor form.	15
3	Complex Variables: Functions of complex variable, Limits and continuity, differentiation, Analytical functions, Cauchy-Riemannn conditions, Cauchy Integral theorem, Cauchy integral formula, Derivatives of analytical functions, Liouville's theorem. Power series Taylor's theorem, Laurent's theorem. Calculus of residues—poles, essential singularities and branch points, residue theorem, Jordan's lemma, singularities on contours of integration, evaluation of definite integrals.	15
4	Computational Techniques and Probability Theory: Root of functions, interpolation, extrapolation, Integration by trapezoid and Simpson's rule, solution of first order differential equation: using Runge-Kutta method and Finite difference methods., Preliminary Concepts: mean values, standard deviation, various moments; Random walkproblem, Binomial distribution, Poisson distribution, Gaussian distributions, Lorentz distribution, Central Limit Theorem.	15

TEXT BOOKS

- 1. **Fredrick W. Byron and Robert W. Fuller**, Mathematics of Classical and Quantum Physics, Dover Publications, Mineola, New York, Vol 1&2, 1970.
- 2. **Merle C. Potter and Jack Goldberg**, Mathematical Methods, S.CHAND (Prentice Hall of India), New Delhi, 2nd Edition, 1987.
- 3. **George Arfken and Hans J Weber**, Mathematical Methods for Physicists, Elsevier Academic Press. Cambridge, Massachusetts, 7th Edition 2012
- 4. **L. A. Pipe**, Applied Mathematics for Engineers and Physicists, Dover Publication Inc., Mineola, New York 3rd Edition 2014.
- 5. **E. Kreyszig**, Advanced Engineering Mathematics, John Wiley & Sons. Hoboken, New Jersey (United States), 10th Edition, 2015.

- 6. **K. F. Riley, M.P. Hobson, and S. J. Bence,** Mathematical methods for Physicists and Engineers, S. CHAND (Cambridge University Press), New Delhi, 3rd edition, 2018.
- 7. **V. BALAKRISHNAN**, Mathematical Physics with Applications, Problems and Solutions, Ane Books, New Delhi, 1st Edition, 2018

Classical Mechanics

Scheme Version:	Name of the subject:	L	Т	P	С	Semester:	Contact hours per	
2022 24	Classical Mechanics						week: 3+1 Total	
2022-24		3	1	0	4	I	Hours: 60=	
						(1st Year)	45+15	
Subject Code:	Applicable to	Evaluatio		30	Exami	 nation Durati	on:3 hours	
SBS PHY 01 102 CC 3104	Programs: M.Sc. Physics	n	CIE	Marks				
		(Total Marks: 100)	TEE	70 Marks	Prerequisite of Course: None			
Course	This course aims at providing knowledge of Classical Mechanics to the students so that							
Description	they are able to understand the Lagrangian & Hamiltonian mechanics of systems of							
	particles interactin of Physics.	g with variou	s forces a	and also the	eir appli	cations in vario	ous branches	
Course	• To und	erstand the fund	damentals	of classical	mechanio	es		
Objectives	_	familiar with vonian formulati		ssical mecha	nical pro	blems related to	Lagrangian &	
	• To awa		about app	olications of	classical	mechanics in v	arious science	
	After completion of	of this course,	students	would be a	ble to:			
Course Outcomes	principle, Lagran	gian mechan about Hamilto	ics, & E	uler's equ	m of particles, D'Alembert's nation of motion. Hamilton's Equations of Motion and milton-Jacobi theory.			
	CO102C.3. Learn	Canonical Tra	ansformat	tions & Hai				
	CO102C.4. Learn	about Rigid b	ody dyna	mics inclu	ding prol	olems.		
	CO102C.5. Under	stand the two	body cen	tral force p	roblem a	and its related a	spects.	

	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	Lagrangian Formulation and Central Force Problem: mechanics of one and many particle systems, Virtual work, Constraints: holonomic and non-holonomic, D'Alembert's Principle and Euler-Lagrange Equations of motion, velocity dependent potentials, simple applications of Lagrangian formulation. Hamilton's Principle, Calculus of Variations, Derivation of Lagrange's equation from Hamilton's principle. Conservation theorems and Symmetry Properties, Noether's theorem.	15
2	Hamilton's Equations of Motion: Generalized momentum, Legendre transformation and the Hamilton's Equations of Motion, simple applications of Hamiltonian formulation, cyclic coordinates, Routh's procedure, Hamiltonian Formulation of Relativistic Mechanics, Derivation of Hamilton's canonical equation from Hamilton's variational principle. The principle of least action.	15
3	Canonical Transformation and Hamilton-Jacobi Theory: Canonical transformation, integral invariant of Poincare, Lagrange's and Poisson brackets as canonical invariants, equation of motion in Poisson bracket formulation. Infinitesimal contact transformation and generators of symmetry, Liouville's theorem. Hamilton-Jacobi equation and its application. Action angle variable: adiabatic invariance of action variable, the Kepler problem in action angle variables.	15
4	Stable and unstable equilibria; Theory of small oscillations in Lagrangian formulation, normal coordinates and its applications, Free vibrations of linear triatomic oscillator. Orthogonal transformation, Eigenvalues of the inertia tensor, Euler equations, Eulerian angles, moment of Inertia. Two body central force problem: Reduction to equivalentone body problem, equation of motion and first integrals, Equivalent one-dimension problem and classification of orbits. Coriolis force.	15

TEXT BOOKS

- 1. A. Sommerfeld, Mechanics, Academic Press, United States, 1st Edition, 1952.
- **2. I. Percival and D. Richards**, Introduction to Dynamics, Cambridge University Press, 1st Edition1982.
- 3. Ronald L. Greene, Classical Mechanics with Maple, Springer, Germany, 2nd Edition, 2000.
- **4. Herbert Goldstein, Charles Poole, John Safko,** Classical Mechanics, Pearson Education, UK, 3rd Edition, 2011.
- **5. L.D. Landau and E.M. Lifshitz,** Mechanics, Butterworth-Heinemann, UK, 2nd Edition, 2012.
- **6. N.C. Rana and P.S. Joag,** Classical Mechanics, Tata McGraw Hill, New Delhi, 1st Edition, 2015.

QUANTUM MECHANICS - I

Scheme Version:	Name of the subject: Quantum	L	T	P	С	Semester:	Contact hours per week: 3+1	
2022-24	Mechanics – I	3	1	0	4	I (1 st Year)	Total Hours: 60= 45+15	
Subject Code: SBS PHY 01 103 CC 3104	Applicable to Programs: M.Sc. Physics	Evaluation (Total	CIE	30 Marks	Examination Duration: 3 hours			
103 CC 3104	Wisc. Thysics	Marks: 100)	TEE	70 Marks	_	quisite of Course: nation Level Quantum nanics		
Course Description	This course is des comprehensive and physics, nuclear ph	d rich applicabi	lity in co	ondensed m	natter phy		•	
Course Objectives	 To understand the fundamentals of quantum mechanics To make familiar with various quantum mechanical problems related to vector space, eigenvalue, Schrödinger equation, free particle, harmonic oscillator, potential barrier and well, angular momenta etc. To aware the students about applications of quantum mechanics in various science branches 							

	After competition of this course, students will be able to							
Course Outcomes	CO103C.1. explain the theories and phenomena of vector space, operators, Dirac's notations, matrices, and commutators which are very helpful in solving the various quantum mechanics problems							
	CO103C.2. understand the uncertainty relation between two arbitrar	ry operators						
	CO103C.3. distinguish the actual meaning of time independent Schrodinger's equations	and time dependent						
	CO103C.4. illustrate Ehrenfest theorem, Poisson Brackets, wave	e packets and wave						
	functions position and momentum space							
	CO103C.5. analyze the energy eigenvalues and wave functions of harmonic oscillator, infinite and finite square wells, free particle, and hydrogen atom							
	CO103C.6. determine the transmission and reflection coefficients of potential barrier and potential step, and delta function well							
	CO103C.7. recognize the importance of angular momentum and quantum mechanics	its applications in						
	CO103C.8. explain the physics behind the addition of angular mom	nenta						
	COURSE SYLLABUS							
Unit No.	Content of Each Unit	Hours of Each Unit						
	Mathematical Tools of Quantum Mechanics:							
1	Vector Spaces, Linear Independence, Bases, Dimensionality, Linear Transformations, Similarity Transformations, Eigen Values and Eigen Vectors, Inner Product, Orthogonality and Completeness, Hilbert Space, Hermitian and Unitary Operators, Orthonormality, Completeness and Closure, Dirac's Bra and Ket Notation, Matrix Representation and Change of Basis, Operators and Observables, Commutation Relations, Uncertainty principle for two arbitrary Operators	15						
1	Linear Transformations, Similarity Transformations, Eigen Values and Eigen Vectors, Inner Product, Orthogonality and Completeness, Hilbert Space, Hermitian and Unitary Operators, Orthonormality, Completeness and Closure, Dirac's Bra and Ket Notation, Matrix Representation and Change of Basis, Operators	15						

2	Quantum Dynamics: Time Evolution Operator, Stationary States, Schrodinger Equation, The Schrodinger versus the Heisenberg Picture, The Infinite Square Well and the Simple Harmonic Oscillator: Energy Eigenvalues and Energy Eigenstates, Connecting Quantum to Classical Mechanics: The Ehrenfest Theorem; Poisson Brackets and Commutators, Wave Packets, Wave Functions in Position and Momentum Space.	15
3	Quantum Mechanics in One and Three Dimensions: Properties of One Dimensional Motion: Bound States and Scattering States, The Free Particle, The Potential Step, The Potential Barrier and Well, The Finite Square Well, The Delta-Function Well, Three Dimension Problems: Hydrogen Atom.	15
4	Angular Momenta and Approximate Analysis: Orbital angular momentum, General Formalism of Angular Momentum, Eigenfunctions and Eigenvalues of Orbital Angular Momentum, Addition of Angular Momenta, Spin Angular Momentum: Stern-Gerlach Experiment; Pauli Matrices and Spinors, Clebsch-Gordan Coefficients.	15

TEXT BOOKS

- 1. **L. D. Landau and E.M. Lifshitz**, Quantum Mechanics, Butterworth Heinemann, The Netherlands, 3rd Edition, 1981.
- 2. **P. A. M. Dirac**, The Principles of Quantum Mechanics, Oxford University Press, UK, 4th Edition, 1988.
- 3. **R. Shankar**, Principles of Quantum Mechanics, Springer, Germany, 2nd Edition, 1994.
- 4. **N. Zettili**, Quantum Mechanics: Concepts and Applications, Wiley, USA, 2nd Edition, 2009.
- 5. **J. J. Sakurai**, Modern Quantum Mechanics, Pearson, India, 2nd Edition, 2013.
- 6. **L. I. Schiff**, Quantum Mechanics, McGraw Hill Education, USA, 4th Edition, 2017.
- 7. **D. J. Griffiths**, Introduction to Quantum Mechanics, Cambridge University Press, UK, 3rd Edition, 2018.
- 8. **C. Cohen-Tannoudji, B. Diu, and F. Laloe**, Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications, Wiley, USA, 2nd Edition, 2019.

Semiconductor Devices

Scheme Version:	Name of the subject:	L	Т	P	C	Semester:	Contact hours per week: 3+1			
2022-24	Semiconductor Devices	3	1	0	4	I (1st Year)	Total Hours: 60= 45+15			
Subject Code: SBS PHY 01 104 CC 3104	Applicable to Programs: M.Sc. Physics	Evaluation (Total Marks:	CIE	30 Marks			tion: 3 hours			
		100)	TEE	Marks	Prerec	Prerequisite of Course: None				
Course Description	The objective of the course on Semiconductor Devices is to introduce semiconductor physics, physical principle of devices and their basic applications.									
Course Objective	 An understanding of basic semiconductor device physics An understanding of the application of Field-Effect Transistors. An understanding of the application of Bipolar Junction Transistors. 									
Course Outcomes	On completion of the CO104C.1. To ungap, charge carrier	derstand the b	oasic pro	perties of			~			
	CO104C.2. To un type and p-type ser		to find tl	ne Fermi ei	nergy lev	vel and carrie	er density in n-			
	CO104C.3. To un junction.	derstand basic	propert	ies of PN	junctions	s and Metal-S	Semiconductor			
	CO104C.4. To unsemiconducting de		•	•			ıs			
		CO104C.5. To understand the working, design, and applications of BJTs and FETs.								
	CO104C.6. To understand the working, design and applications of Operational									

	Amplifier	
	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	Semiconductors: Energy Band and Charge Carriers: Energy bands in semiconductors, Types of semiconductors: Intrinsic and extrinsic materials. Carrier concentration: Fermi Level, Electron and hole concentration in equilibrium, Temperature dependence of carrier concentration, Compensation and charge neutrality. Conductivity and mobility: Effect of temperature, Doping and high electric field, Hall Effect.	15
2	Junctions: p-n junction and contact potential, Fermi levels, Space charge, Reverse and Forward bias, Zener and Avalanche breakdown. Capacitance of p-n junction, Diode Applications: Load-Line Analysis, Series Diode Configurations, Parallel and Series-Parallel Configurations (AND/OR Gates), Half-Wave Rectification, Full-Wave Rectification, Clippers, Clampers. Network with a DC and AC Source, LED, Solar cell and photodetectors, Metal-Semiconductor contact: Rectifying contact and Ohmic contact.	15
3	Bipolar Junction Transistors (BJT): Fundamentals of BJT, BJT Operation: Common-Base Configuration, Common-Emitter Configuration, Common-CollectorConfiguration, Limits of Operation, Minority carrier distribution, BJT DC Biasing: Operating Point, Fixed-Bias Configuration, Emitter-Bias Configuration, Voltage-Divider Bias Configuration, Collector Feedback Configuration, Emitter-Follower Configuration, Field Effect Transistors: JEFT: Construction and Characteristics of JFETS, Transfer Characteristics, MOSFET: Depletion-Type MOSFET, Enhancement-Type MOSFET, Transfer Characteristics.	15
4	Operational Amplifiers: Differential amplifier (DA)- Basic circuit of differential amplifier Operation of differential amplifier: Common-mode rejection ratio	

(CMRR), DC analysis of differential, Applications of OP-amp: Inverting amplifier-Input and impedance of inverting amplifier, Noninverting amplifier-Voltage follower, Effect of negative feedback on OP-amp in feedback circuits, Summing amplifiers-Applications of summing amp, OP-amp as integrators and differentiators.

TEXT BOOKS

- 1. **J.J. Cathey**, Schaum's Outline of Electronic Devices and Circuits, McGraw Hill, New York, 2nd Edition 2002.
- 2. **B. Streetman and S. Banerjee**, Solid State Electronics, Prentice Hall India, New Delhi, 6th Edition, 2006.
- 3. Millman and Halkias, Integrated Electronics, McGraw Hill, New York, 2nd Edition 2009.
- 4. **A.P. Malvino**, Electronic Principles, McGraw, New Delhi, New York 7th, Edition, 2009.
- 5. **J.H. Moore, C.C. Davis and M.A. Coplan**, Building Scientific Apparatus, Addison Wesley, United States, 4th Edition 2009.
- 6. **R.L. Boylestad and L. Nashelsky**, Electronics Devices and Circuit Theory, Prentice Hall of India, New Delhi, 11th Edition, 2013.
- 7. **P. Horowitz and W. Hill**, The Art of Electronics, Cambridge University Press, 3rd Edition, 2015.

LABORATORY I

Scheme Version:	Name of the subject: Laboratory I	L	T	P	С	Semester:	Contact Hours per Week: 12	
2022-24	, and the second	0	0	12	6	I (1 st Year)	Total Hours: 180	
Subject Code:	Applicable to	Evaluatio		30	Exami	nation Duratio	n: 3 hours	
SBS PHY 01	Programs:	n	~	Marks				
105 CC 00126	M.C. Dhusias	(T-4-1	CIE					
	M.Sc. Physics	(Total		70	Prerea	uisite of Cours	se: None	
		Marks: 100)	TEE	Marks	•			
Course Description	The objective of the lab 1 is to train students to perform various experiments associated with Electronics, Quantum physics, Waves mechanics and Spectroscopy. Students assigned the general laboratory work will perform at least ten (10) experiments of the above mentioned list of Physics experiments and further 8 experiments from the C programming section Experiments of equal standard may be added. Workshop soldering and designing of experiments should be included							
Course Objectives	 To give hands on experience to students for generating magnetic field and measurement of various parameters. To teach how temperature controlled oven works To take measurements of current and voltage using various equipment 							
Course Outcomes	After competition CO105C.1. lear electronic device CO105C.2. Lear CO105C.3. Use	n various Phyes, atomic and	ysics aspo molecula	ects by pe ar physics,	rforming	the experimen		

	CO105C.4. to do C programming	
	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	 Hall Effect Four Probe Method to find band gap of semiconductor Electron Spin Resonance Frank-Hertz experiment PN Junction characteristics Solar cell characteristics Velocity of ultrasonic wave in liquids Characteristics of MOSFET Diode as voltage regulator Ionization potential of mercury Planck's constant using LED Law of Malus Zener diode characteristics 	150
2	 Introduction to C Programming: Write a Program to calculate and display the volume of a CUBE having its height, width and depth. Write a C program to perform addition, subtraction, division and multiplication of two numbers Write a program to input two numbers and display the maximum number. Write a program to find the largest and smallest among three entered numbers and also display whether the identified largest/smallest number is even or odd. Write a program to find the roots of quadratic equation. Write a program to check whether the entered year is leap year or not (a year is leap if it is divisible by 4 and divisible by 100 or 400.) Write a program to find the factorial of a number. Write a program to check number is Armstrong or not. Write a program to find GCD (greatest common divisor or HCF) and LCM (least common multiple) of two numbers Write a program to generate Fibonacci series.	30

TEXT BOOKS

- 1. **Worsnop and Flint,** Experimental Physics, Little hampton Book Services Ltd, United Kingdom, 9th Edition, 1951.
- 2. **A. C. Melissinos, J. Napolitano,** Experiments in Modern Physics, Academic Press, Cambridge, Massachusetts, 2nd Edition, 2003.
- 3. Lab manuals, prepared by faculty of the Department of Physics, 2018.

Numerical Methods and Programming

Scheme Version:	Name of the subject:	L	Т	P	C	Semes	ster:	Contact Hours
2022-24	Numerical Methods and					I (1 st Y	(ear)	per Week: 4
	Programming Programming	2	1	2	4		· cur)	Total Hours: 60= 45+15
Subject Code: SBS PHY 01 101	Applicable to Programs: M.Sc.	Evaluation (Total Marks: 100)	CIE	30 Marks	Examination Duration: 3hours			
GEC 2124			TEE	70 Marks	Prerequisite of Course: B.Sc.With Mathematics.			
Course Description	This course teaches the students to solve basic problems of mathematics and sciences with the help of an approximation and a computer.							
Course Objectives	 To make the student 1) Understand basics of a Programming Language 2) Awareness of various Numerical methods. 3) Able to create hypothetical data sets for Physical Systems. 4) familiar with random sampling of large data sets. 							
	Students will be able to learn: CO101G.1: to write a computer program in C.							
Course Outcomes	CO101G.2: the solutions of linear and non-linear equations along with solutions of simultaneous linear equations.					th		
	CO101G.3: Numerical differentiation and integration.CO101G.4: Monte Carlo methods and its application to problems of physical world.							
COURSE SYLLABUS								
Unit No.	Content of Each Unit							rs of Each Unit
1	C/C++: Flow charts, Algorithms, Input and output statements, Control statements, Arrays, Repetitive and logical structures, Subroutines and functions.						15	
2	Numerical Methods of Analysis: Roots of a function, Solution of simulteneous linear						15	

	equation, Interpolation and curve fitting, Numerical differentiation and integration, Solution of ordinary					
	differential equations					
3	Simulations I: Generation of random numbers, Statistical tests of randomness,, Monte-Carlo evaluation of integrals and Error Analysis.	15				
4	Simulations II: Inhomogeneous distribution and Importance of datasampling, Metropolis algorithm, Brownian motion as random walk problem and its Monte-Carlo simulation.	15				
TEXT BOOKS						

- S. S. M. Wong, Computational Methods in Physics and Engineering, World Scientific,
- 2. C. F. Gerald, Applied Numerical Analysis, Pearson/Addison Wesley, UK, 7th Edition, 2003.
- **3. Teukolsky, Vetterling and Flannery,** Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, 3rd Edition 2007.
- **4. Landau and Binder,** A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press, 3rd Edition, 2013.
- **V. Rajaraman,** Computer Oriented Numerical Methods, Prentice Hall of India, New Delhi, 4th Edition, 2015.
- **V. Rajaraman,** Computer Programming in FORTRAN 90/95, Prentice Hall of India, New Delhi, 1st Edition, 2015.

Singapore, 2nd Edition, 1997.

Modern Optics

Scheme	Name of the	L	T	P	С	Semester:	Contact	
Version:	subject:						hours per	
	Modern Optics						week: 3+1	
							Total	
2022-24						I	Hours:	
		3	1	0	4	1	60= 45+15	
						(1st Year)		
Subject Code:	Applicable to	Evalu		30	Examination Duration: 3 hours			
SBS PHY 01	Programs:	ation	CIE	Marks				
102 GEC 3104	M.Sc. Physics							
		(Total		70	Prerequisite of Course: B.Sc.			
		Marks	TEE	Marks	with P	hysics		
		: 100)						
Course	The course has focus on the Geometrical and wave optics, thin films, Holography,						graphy,	
Description	optical fiber, liquid crystals, LED and Photonic band gap crystals.							
_								
	• To und	lerstand the	fundamentals	of ontics				
Course	10 0110			or option				
Objectives	To impart knowledge about different physical phenomena.							
	To update the students with the latest technologies.							
	After completion of this course, students would be able to:							
	After completion of	of this cou	rse, students	would be a	ble to:			
Course	CO102G.1. Under	rstand the	various phys	ical phenor	nena & t	heir real life a	pplications.	
Outcomes	CO102C 2 I	a h ar-4 41	wowo andias	and hala	o nb r-			
	CO102G.2. Learn	about the	wave optics	and notogr	apny.			
	CO102G.3. Get knowledge about the basics of Lasers.							
	CO102C 4. Learn shout the fiber entire & LED							
	CO102G.4. Learn about the fiber optics & LED.							
COURSE SYLLABUS								
Unit No.		Conte	ent of Each U	J nit		Но	urs of Each	
							Unit	

1	An overview of Geometrical and Wave Optics: Laws of Reflection, Refraction, Total Internal Reflection; Ideas of Interference, Diffraction, Polarization, Dispersion.	15
2	Fresnel Relations: Conductors, Thin Films: Reflection Model, Matrix Formalism, Coating Design, Fourier Optics: Wave Propagation, Fraunhofer Diffraction, Fresnel Diffraction, Spatial Filtering, Holography and Holograms.	15
3	Coherence, Interference and Visibility, Laser Physics: Overview, Gain Saturation, Light-Atom Interactions, Optical Gain and Pumping Schemes, Output Characteristics, Light Shifts and Optical Forces, Atom-Photon interactions.	15
4	Fiber Optics: Mode Analysis, Single mode and multimode optical fiber, Loss and Dispersion, Photonics Band-gap Crystals, Liquid crystals, Introduction of LED.	15

- 1. 1. A. E. Siegman, Lasers, University Science Book, USA, Revised Edition, 1986.
- **2. G. R. Fowles,** Introduction to Modern Optics, Dover Publication, USA, 2nd Edition, 1989.
- **3. J. T. Verdeyen,** Laser Electronics, Prentice-Hall, India, New Delhi, 3rd Edition, 1995.
- **4. E. Hecht,** Optics, Addison Wesley, USA, 4th Edition, 2001.
- **5. Pedrotti,**Introduction to Optics, Pearson UK, 3rd Edition, 2006.
- **6. B. E. A. Saleh and M. C. Teich,** Fundamentals of Photonics, Wiley, United States, 2nd Edition, 2012.
- 7. A. Ghatak, Optics, Tata McGraw-Hill, New Delhi, 6th Edition, 2017.

Physics of Digital Photography

Scheme	Name of the	L	T	P	С	Semester:	Contact
Version:	subject:						hours per week: 3+1
	Physics of						
2022-24	Digital Photography	3	1	0	4	I (1st Year)	Total Hours: 60= 45+15
Subject Code:	Applicable to	Evaluation		30	Exami	nation Durat	ion: 3 hours
SBS PHY 01	Programs:	(Total	CI	Marks			
103 GEC 3104	M.Sc. Physics	Marks: 100)	E				
				70	Duonoc	uisite of Cou	ungos D Co
				Marks	with Pl	-	iise. D.Sc.
			TE			•	
			E				
Course	The aim of this co	-					
Description	chain. The course i practice.	s intended to serv	ve as a	link betwee	en imagi	ng science and	l photographic
Course Objective	To become camera.	e proficient at t	he tec	hnical aspe	ect of ph	notographing	with a digital
		p and practice sl emailing and pos			photogr	aphy tools an	nd the Internet
	l	p the habit of loc	_	•			•
	_	nt it in terms of a to see what you		-	and truti	1. – 10 100k a	i what you are
Course	On completion of	the course, stude	nt wou	ld be able:			
Outcomes	CO103G.1. To un	derstand the pho	tograp	hic optics &	& method	ds	
	CO103G.2. To un	derstand the basi	c princ	ciple of pho	otograph	y	
	CO103G.3. To understand the theory of exposure						
	CO103G.4. To understand about the image quality						

	COURSE SYLLABUS					
Unit No.	Content of Each Unit	Hours of Each Unit				
	Fundamental optical formulae: Image formation: Refraction, Gaussian optics, Lens refractive power,					
1	Magnification, Focal length, Lens focusing movement Field of view: Entrance and exit pupils, Chief and marginal rays, Angular field of view, Field of view area, Focal-length multiplier, Depth of field: Circle of confusion, Depth of field equations, Hyperfocal distance, Focus and recompose limits, distortion, Exposure: Photometry, Flux emitted into a cone, Relative aperture, f- number, Working f-number, f-stop, Natural vignetting, Photometric exposure, Exposure value, f-number for aplanatic lenses	15				
2	History of photography: Pinhole Camera, Camera Obscura, Normal Human Eye and Process of Seeing-Human eye and camera, Camera principles: Compact cameras and SLR's - Working of SLR camera- Different image sensors-CCD and CMOS. Angle of view- Different types of lensesnormal lens, wide angle lens, fish eye lens, prime lens, telephoto lens. Depth of Field-Shallow depth of field, large depth of field, Depth of focus - circles of confusion	15				
3	Exposure strategy: Digital output, Sensor response, Colour, Digital output levels, Dynamic range, Tonal range, Tone reproduction, Gamma, Tone curves, Histograms, verage photometry, Reflected-light metering, Average scene luminance, Exposure index, ISO speed, Standard output sensitivity, Exposure modes: Metering modes, Exposure compensation, Aperture priority (A or Av), Shutter priority (S or Tv), Program mode (P), Manual mode (M)	15				
4	Image quality: Colour temperature, White balance, Color space, Lens MTF, sharpness, Signal-to-noise ratio, Different Image capturing formats: RAW, TIFF, JPEG, Storage Devices- SD card CF card, Principles of Composition: Perspective - Space (Negative and Positive), Directional lines-Golden Section and Rule of the Third, Colour	15				

Theory	

- 1. **Steven Heller**, A History of Photography: From 1839 to the Present
- 2. Tom Ang, Photography: The Definitive Visual History
- **3. Todd Gustavson** and **George Eastman House**, Camera: A History of Photography from Daguerreotype to Digital by Understanding Exposure, Fourth Edition by BRYAN PETERSON.
- 4. **DK**, Digital Photography Complete Course Hardcover
- **5. Fil Hunter, Steven Biver and Paul Fuqua**, Light Science & Magic: An Introduction to Photographic Lighting by Understanding Color in Photography by Bryan Peterson.
- **6. Andy Rowland**, Physics of Digital Photography by (IOP Publishing).

RENEWABLE ENERGY RESOURCES

Scheme Version:	Name of the Subject:	L	T	P	C	Semester:	Contact		
2022-24	Renewable Energy						hours per week: 3+1		
	Resources	3	1	0	4	I (1st Year)	Total Hours: 60= 45+15		
Subject Code: SBS PHY 01 104	Applicable to Programs:	Evaluation	CIE	30 Marks	Exam	Examination Duration: 3 hours			
GEC 2002	M.Sc. Physics	(Total Marks): 100	TEE	70 Marks		equisite of cou Medical	rse: 10+2 with		
Course Description	To introduce the pattern of fuel consumption, energy demand, various renewable sources of energy and modern applications.								
Course Objectives	The course treat	ts the basics of venethods; it is suita							
Course	On completion of this cou	ırse, student will l	earn:						
Outcomes:	CO104G.1 The Course w	ill create awarenes	ss among s	students abo	out Non-(Conventional so	ources of energy		
	technologies and provide		_						
	CO104G.2 The Course v	vill be introducing	g the stude	ents to all tl	he aspec	ts of PV techno	ology. This will		
	enable them to understand	_			-				
	CO104G.3 It creates awa	_		out wind an	d geothe	ermal energy te	echnologies and		
	provide adequate inputs o CO104G.4 To teach fund	•		ov as enerov	systems	production pro	ncesses storage		
	utilization, and safety that	-	-		-		occises, storage,		
	CO104G.5 It increases	•	_	-		•	and hydrogen		
	production & its infrastru automotive sectors.	cture developmen	t related s	sectors as al	out 40%	energy is beir	ng consumed by		
	CO104G.6 To give an id	ea about different	t biomass	and nuclear	r as ener	gy source and	their processing		
	and utilization for recover								
	wastes are utilized for re	ecovery of value	would be	immensely	useful	for the student	s from all		
	fields.	CO	URSE SY	YLLABUS					
Unit No.		Content of				T	Hours of		
Unit No.		Content of	Each Oil	IL			Each Unit		
1.	Energy Scenario and So	O.			~		15		
	Global and Indian Er								
	Noncommercial Forms of Systems on Environment				_				
	Sources, Solar Thermal a				TOIC LIIC	15y			
2.	Wind and Geothermal I		· · · ·)			15		
	Wind Energy Basics- Glo	bal circulation, F		-		-			
	force and Coriolis force,	_		•					
	Wave Energy, Geother	mal regions, g	eothermal	sources,	Geother	rmal energy			
	conversion technologies.								

3.	Hydrogen Energy and Fuel cells:	15
	Hydrogen Energy-production and storage, Production Processes: Thermo chemical	
	Water Splitting, Gasification, Pyrolysis methods. Electrochemical, Electrolysis, Photo	
	electro chemical. General storage methods, compressed storage, Zeolites, Metal	
	hydride storage, chemical hydride storage and cryogenic storage. Fuel cells-	
	Thermodynamics and performance of Fuel Cells, Its working, construction,	
	classifications and applications.	
4.	Biomass and Nuclear Energy:	15
	Biomass Energy and application, Techniques for biomass assessment,	
	Thermochemical conversion of biomass, Mini/micro hydro power: classification of	
	hydropower schemes, Nuclear Energy: Fission, Fusion, Different type of nuclear	
	reactors, Nuclear waste disposal and environment measures.	
	DEFEDENCE BOOKS	

REFERENCE BOOKS

- 1. Solar Energy: S. P. Sukhatme, (Tata McGraw Hill).
- 2. Garg .H.P,Prakash .J, "Solar energy fundamentals and applications", Tata McGraw Hill publishing Co. Ltd, 2006.
- 3. Xianguo Li, Principles of Fuel Cells, Taylor and Francis, 2005.
- 4. Fundamentals of Renewable Energy Processes, Aldo Vieira da Rosa, Elsevier Academic Press.
- 5. J Twidell and T Weir, Renewable Energy Resources, Taylor and Francis (Ed), New York, USA, 2006.
- **6.** KC Khandelwal, SS Mahdi, Biogas Technology A Practical Handbook, Tata McGraw Hill, 1986.
- 7. EH Lysen, Introduction to Wind Energy, CWD Report 82-1, Consultancy Services Wind Energy Developing Countries, May 1983.
- **8.** JG Collier and GF Hewitt, Introduction to Nuclear Power, Hemisphere Publishing, New York, 1987.

STATISTICAL MECHANICS

Scheme	Name of the	L	T	P	C	Semester:	Contact
Version:	subject:						hours per
	Statistical Mechanics						week: 3+1
2022	Wiechanies						
2022-24						II (1 st	Total Hours:
		3	1	0	4	Year)	60= 45+15
		3	-	Ü	·		
Subject Code:	Applicable to	Evaluation	CIE	30	Exami	nation Dura	tion: 3 hours
SBS PHY 01	Programs:	(Total Marks:		Marks			
201 CC 3104	M.Sc. Physics	(10tal Marks: 100)	TEE	70	P ₁	rerequisite o	f Course:
		100)		Marks		duation Leve	
					Med	hanics and M	I athematical
						Physic	es
Course	This course is de	eveloped for under	l standin	g of thermo	l odynami	es and statisti	cal mechanics.
Description		oad and rich app		•	•		
	physics, classica	al mechanics and e	lectrod	ynamics.			
	To understan	d the fundamentals	of therm	odynamics	and statis	tical mechanic	es .
Course	To make far	niliar with various	thermo	lynamical a	nd statist	ical machanic	e tarme euch ac
Objectives	 To make familiar with various thermodynamical and statistical mechanics terms such entropy, free energy, phase space, statistical ensembles, Bose-Einstein statistical 						
Sycon	_	-Dirac statistics etc.	-				
	To able the s	tudents for solve the	probler	ns related to	thermod	vnamics and s	tatistical physics
		s course, the stude				,	P
	At the end of thi	is course, the stude	mis WII	i ut auit 10			
	CO201C.1. exp	lain the various the	ermody	namical qu	antities	and Maxwell	's relations
Course Outcomes	CO201C.2 appl	y the thermodynar	nics in	ideal gas, r	magnetic and dielectric materials		
	CO201C.3. des	cribe various statis	tical ap	proaches w	hich des	scribe system	s of particles
	CO201C.4. evaluate the formulae of random walk and diffusion equation						
	CO201C.5. con	npare microstates,	macros	tates, and s	tatistical	ensembles	

CO201C.6.understand the theories and mathematical approaches of statistical ensembles, equipartition theorem and Maxwell-Boltzmann statistics

CO201C.7. illustatre the fundamental concepts of Bose-Einstein and Fermi-Dirac Statistics

CO201C.8. calculate the problems related to Bosons and Fermions

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
1	Review of Thermodynamics: Extensive and intensive variables, laws of thermodynamics, Entropy for Different Systems, Gibbs Paradox, Boltzmann Relation for Entropy, Legendre Transformations and Thermodynamic Potentials, Chemical Potential, Free Energy and Its Connection with Thermodynamic Quantities, Maxwell Relations, Applications of Thermodynamics to (a) Ideal Gas, (b) Magnetic Material, and (c) Dielectric Material.	15
2	Statistical Methods and Description of Systems of Particles: Binomial distribution, Poisson distribution, Gaussian distributions, Central Limit Theorem, Random Walk and Brownian Motion, Diffusion Equation, Phase Space, Liouville's Theorem, Phase Equilibrium, Microstates and Macrostates, Statistical Ensembles, Irreversibility and the Attainment of Equilibrium	15
3	Classical Statistical Mechanics: Micro-Canonical Ensemble, Canonical Ensemble: Derivation of Partition Function and Thermodynamic Quantities; Mean Values and Fluctuations, Grand Canonical Ensemble: Gibbs Factor; Gibbs Distribution; Derivation of Partition Function and Thermodynamic Quantities; Fluctuations in the Number of Particles, Applications of Canonical and Grand Canonical Ensembles, Equipartition Theorem and It's Applications, Maxwell-Boltzmann Statistics.	15
4	Quantum Statistical Mechanics: Bosons: Occupation Number; Bose-Einstein Statistics; Debye Theory of Specific Heat; Grand partition function For Ideal Bose	15

Radiation; Bose-Einstein Gas; Black-Body Condensation, Fermions: Occupation Number; Fermi-Dirac Statistics; IdealFermi gas, Pauli Paramagnetism, First and Second Order Phase Transitions, Ising Model, Phase Equilibria: Equilibrium Conditions; Simple Phase Diagrams; Clausius-Clapeyron Equation.

- 1. **F. Reif**, Fundamental of Statistical and Thermal Physics, McGraw-Hill, USA, 1965.
- 2. L. D. Landau and E. M. Lifshitz, Statistical Physics, UK, 3rd Edition, 1980.
- 3. **D. V. Schroeder**, An Introduction to Thermal Physics, Addison Wesley Longman, UK, 2000.
- 4. **J. P. Sethna**, Statistical Mechanics: Entropy, Order Parameters and Complexity, Oxford University Press, UK, 2006.
- 5. **M. Kardar**, Statistical Physics of Particles, Cambridge University Press, UK, 2007.
- 6. **H. Gould and J. Tobochnik**, Statistical and Thermal Physics: With Computer Applications, Princeton University Press, USA, 2010.
- 7. **K. Huang**, Statistical Mechanics, Wiley, India, 2nd Edition, 2011.
- 8. **R. K. Pathria and P. D. Beale**, Statistical Mechanics, Academic Press, USA, 2011.

Classical Electrodynamics

Scheme Version	Name of the subject:	L	Т	P	С	Semester:	Contact Hours per Week: 4
2022-24	Classical Electrodynamic s	3	1	0	4		Total Hours: 60= 45+15
Subject Code: SBS PHY 01 202 CC 3104	Applicable to Programs: M.Sc.Physics	Evaluation (Total Marks:100)	CIE	30 Marks			tion: 3 hours
			TEE	70 Marks	Prerec	quisite of Co	urse: None
Course Descriptio n	This course is designed for fundamental knowledge of basic electrodynamics and it's applications to various phenomena.						
Course Objectiv e	 To evaluate fields and forces in Electrodynamics and Magneto dynamics using basic scientific method. To provide concepts of relativistic electrodynamics and its applications in branches of Physical Sciences. 						
Course Outcomes	On completion of the course, student would be able: CO202C.1. To understand the basics of electrostatics CO202C.2. To use of Maxwell equations in analysing the electromagnetic field due to time varying charge and current distribution. CO202C.3. To describe the nature of electromagnetic wave and its propagation through different media and interfaces.						

CO202C.4. The students will be able to analyze s radiation systems in which the electricdipole, magnetic dipole or electric quadruple dominate.

CO202C.5. The students will have an understanding of the covariant formulation of electrodynamics and the concept of retarded time for charges undergoing acceleration.

CO202C.6. To explain charged particle dynamics and radiation from localized time varying electromagnetic sources.

COURSE SYLLABUS

Unit No.	Content of Each	Hours of Each
	Unit	Unit
1	Electrostatics: Coulomb's law, Guass's law, Poisson's equation, Laplace equation. Simple boundary value problems illustrating various techniques such as method of images, separation of variables, Green's functions, Multipole expansion. Electrostatics of dielectric media, multipole expansion. Boundary value problems in dielectrics; molecular polarisability, Clausius Mossotti Relation, electrostatic energy in dielectric media.	15
	Magnetostatics & Maxwell's Equations:	
2	Review of Magnetostatics: Biot-Savart law, Ampere's theorem, Electromagnetic induction, examples of magnetostatic problems, , Scalar and vector potentials, Singularity in Dipole Field: Fermi Contact term, Gauge symmetry, Coulomb and Lorentz gauges, Hertz Potential, Gauge invariance, Displacement current, Time varying fields, Maxwell's equations in free space and linear isotropic media (non conducting) boundary conditions on the fields at interfaces. Poynting theorem, conservation laws for a system of charged particles and electromagnetic field,	15
	Electromagnetic Waves:	
3	Electromagnetic waves in free space, dielectrics and conductors. Reflection and refraction, polarization, Fresnel's law, Total internal Reflection: Stoke's parameter, interference, coherence, and diffraction, frequency dispersion in dielectrics and metals, dielectric constant and anomalous dispersion, wave propagation in one dimension, group velocity, metallic wave guides, boundary conditions at metallic surfaces, propagation	15

	modes in wave guides, Resonant Cavities	
4	Radiation and Relativistic Electrodynamics: Lorentz Transformation, Lorentz invariance of Maxwell's equation. Dynamics of charged particles in static and uniform electromagnetic fields. Radiation- from moving charges and dipoles and retarded potentials Field of a localized oscillating source, fields and radiation in dipole and quadrupole approximations, Lienard-Wiechert potentials, Total power radiated by an accelerated charge, Lorentz formula. Four-vectors relevant to electrodynamics, electromagnetic field tensor and Maxwell's equations, transformation of fields, fields of uniformly moving particles.	15
	TEXT	

- 1. **L.D. Landau** and E.M. Lifshitz, Classical Theory of Electrodynamics, Butterworth-Heinemann. Germany, 4thEdition, 1987.
- 2. **S.P. Puri**, Classical Electrodynamics, Narosa Publishing House, 2011.
- 3. Melvin Schwartz, Principles of Electrodynamics, Dover Publications, UK, 1st Edition, 1987.
- 4. Walter Greiner, Classical Electrodynamics, Springer, Germany, 1st Edition, 1998.
- 5. **J. Schwinger**, L.L. Deraad Jr, K.A. Milton, W-Y. Tsai and J. Norton, Classical Electrodynamics, WestviewPress, UK, 1998.
- 6. **David J. Griffiths**, Introduction to Electrodynamics, Benjamin Cummings, USA, 3rd Edition, 1999.
- 7. J.D. Jackson, Classical Electrodynamics, John Wiley & Sons, United States, 2nd Edition, 2003.
- 8. **Charles A. Brau**, Modern Problems in Classical Electrodynamics, Oxford University Press, 1st Edition, 2003
- 9. **L. D. Landau** and E. M. Lifshitz & L. P. Pitaevskii, Electrodynamics of Continuous Media Oxford, 1st Edition, 2005.
- 10. **Wolfgang K. H. Panofsky** and Melba Phillips, Classical Electricity and Magnetism, Dover Publications, UK,2nd Edition, 2012.
- 11. Joseph Edminister, Schaum's outline of electromagnetics, New Delhi, 2nd Edition, 2017.

Mathematical Methods in Physics-II

Scheme	Name of the	L	T	P	C	Semester:	
Version:	subject: Mathematical						Hours per Week:
2022-24	Methods in					II (1st	per week.
	Physics-II					Year)	Total Hours:
		3	1	0	4		60= 45+15
Subject	Applicable to	Evaluation		30	Exar	∟ mination I	Uuration:
Code: SBS	Programs:	(Total	CIE	Marks	3hou	ırs	
PHY 01 203	M.Sc. Physics	Marks: 100)					
CC 3104			(DEE)	70		equisite of	
			TEE	Marks		hematical ysics I	Methods
Course	This course has	been develop	ped to	introduce		•	ome topics of
Description	mathematical Ph	ysics which are	directl	y relevan	t in di	ifferent sub	ojects of M.Sc.
	Physics. It inclu	des Ordinary d	lifferent	ial equati	ion, sp	pecial func	tions and
	different transfor			e differen	itial eq	uation.	
Course	To Make the stu						
Objectives		nd Ordinary di					m amiala
3		ries method of Transfor and L					
		ial equation.	иріисс	114113101	III do d	t tool to so	
	On completion of	of the course, s	tudent	would be	able t	to:	
Course	CO203C.1 : to se			_			
Outcomes	CO203C.2 : to u	se the special fu	ınction	in Quantu	m med	chanics and	1
	electrodynamics CO203C.3 : to p	erform Fourier	trancfoi	m on a gi	van da	nto cot	
	CO203C.4: to p			_			
		COURSE S			<i>-</i>		
Unit No.		Content of I	Each U	nit		H	lours of Each Unit
	Second Order D	-					
1	Separation of		•		_		1.5
1	singular points, s Hermite, Lague						15
	properties and re					gonar	
	Special function						
				•	1	. ,	
2	Spherical harmon				•		15
	Sturm -Liouvill	•			•		
	Wronskian linear	independence	and/ lin	ear depen	dence.	•	

	Fourier Transforms:	
	Fourier Transforms: Development of the Fourier integral from	
2	the Fourier Series, Fourier and inverse Fourier transform,	1.5
3	Convolution theorem. Simple Applications: FTIR,	15
	Telecommunication systems, Solution of partial differential	
	equation wave equation	
	Laplace Transforms:	
4	Laplace transforms and their properties, Convolution theorem, Application of Laplace transform in solving linear, differential equations with constant coefficient, with variable coefficient and linear partial differential equation.	15
	TEXT ROOKS	

- 1. Merle C. Potter and Jack Goldberg, Mathematical Methods, S. CHAND (Prentice Hall of India), New Delhi, 2nd Edition, 1987.
- 2. Fredrick W. Byron and Robert W. Fuller, Mathematics of Classical and Quantum Physics, Dover Publications, UK, Vol 1 &2, 1970.
- 3. George Arfken and Hans J Weber, Mathematical Methods for Physicists, Elsevier Academic Press, Cambridge, 7th Edition, 2012.
- L. A. Pipe, Applied Mathematics for Engineers and Physicists, Dover Publication 4. Inc. 2014.
- 5. E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, United States, 10th Edition, 2015,
- 6. K.F.Riley, M.P. Hobson, and S.J.Bence, Mathematical methods for Physicists and Engineers, S. CHAND (Cambridge University Press), New Delhi, 3rd Edition, 2018.
- 7. **V Balakrishnan:** Mathematical Physics with Applications, Problems and Solutions; Ane Books, 1st Edition, 2018.

LABORATORY-II

Scheme Version:	Name of the subject: Laboratory-II	L	Т	P	С	Semester:	Contact Hours per Week: 12
2022-24		0	0	12	6	II (1st Year)	Total Hours: 180
Subject Code:	Applicable to	Evaluatio		30	Examir	nation Duration	n: 3 hours
SBS PHY 01	Programs:	n	CIT	Marks			
204 CC 00126	M.Sc. Physics	(Total	CIE				
	Wi.sc. I hysics	Marks: 100)	TEE	70 Marks	Prerequ	uisite of Cours	e: None
Course	The aim & obj	ective of the	course i	s to impa	rt the pr	actical training	on various
Description	electronics devices such as; Op-Amp, Vibrators, Amplifiers, Michelson interferometer etc. Students assigned the general laboratory work will perform at least twelve (12) experiments from the above mentioned. More experiments of similar nature may be added.						
Course Objectives	 To train students for various electronics experiments and take measurements To train students on various optical instruments like Spectrometer, Michelson Interferometer To have hand on experiment for measurement of magnetoresistance and dielectric constant. 						
	After completion	of this course	e, the stud	lents will	be able to		
Course	CO204C.1. Und	erstand spectr	al lines, g	grating spe	ctra, and	interference fri	nges
Outcomes	CO204C.2. Learn the characteristics of Op-Amp, vibrators, clipper, clampers, and DA/AD						
	CO204C.3. Use	excel for plot	ting grapl	ns			
	CO204C.4. Und	lerstand motio	on of temp	erature an	nd magne	tic field depend	ence of Hall

COURSE SYLLABUS Content of Each Unit 1. Study of Balmer series and Rydberg constant 2. Op-Amp as inverting and non-inverting amplifier 3. Op-Amp as differentiator, Integrator and Adder	Hours of Each Uni
 Study of Balmer series and Rydberg constant Op-Amp as inverting and non-inverting amplifier 	
2. Op-Amp as inverting and non-inverting amplifier	
 e/m by Thomson method Single stage RC coupled amplifier Frequency response of common emitter amplifier Bistable/Monostable/Astable vibrators Grating spectra Refractive index of water and oil using prism Magneto resistance Temperature dependence of Hall coefficient Digital to Analog converter, Analog to Digital converter Michelson Interferometer Faraday Effect Clipper and clampers 	150
 Root finding of a polynomial equation using numerical methods Solving first and second order differential equation numerical methods Numerical integration Generating finite and infinite series 	30
14. 1. 2.	Faraday Effect 15. Clipper and clampers Root finding of a polynomial equation using numerical methods Solving first and second order differential equation numerical methods Numerical integration

- 2. **Worsnop and Flint,** Experimental Physics, Little hampton Book Services Ltd, United Kingdom, 9th Edition, 1951.
- 3. **A. C. Melissinos, J. Napolitano,** Experiments in Modern Physics, Academic Press, Cambridge, Massachusetts, 2nd Edition, 2003.
- 3. Lab manuals, prepared by faculty of the Department of Physics, 2018.

QUANTUM MECHANICS - II

Scheme	Name of the	L	T	P	С	Semester	Contact		
Version:	subject:						hours per		
	Quantum						week: 3+1		
	Mechanics –					-	T-4-1 II		
2022-24	II				Total Hours				
		3	1	0	4	II	60= 45+15		
						(1st Year)			
Subject Code:	Applicable	Evaluatio		30	Exami	nation Dur	ration: 3 hours		
SBS PHY 01	to	n	CIE	Marks					
201 DCEC 3104	Programs:								
	M.Sc.	(Total		70		quisite of Co			
	Physics	Marks:	TEE	Marks	Quanti	ım Mechani	ics-I		
		100)							
Course	This course is designed to understand some advanced topics such as symmetries,								
Description	identical partic	les, approxim	ation metho	ods and rela	tivity in	quantum m	nechanics, which		
_	has broad and	rich applical	bility in co	ndensed m	atter ph	ysics, atomi	ic andmolecular		
	physics, nuclea	r physics, spa	ace science,	and chemi	stry.				
					-	•	nechanics such as independent and		
	-						ethods, scattering		
Course		ory, delta func				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	emous, seamening		
Objectives		-							
						_	mena of quantum		
	me	chanics in phy	sical, mather	natical and o	chemical	sciences			
	After completion	on of this cou	rse, student	s will be at	ole to				
	CO201D.1. 11n	derstand the	concepts of	of symmetr	ies, con	servation la	ws, bosons and		
Course	fermions		F				in		
Outcomes		ıantum mecha	anics						
Guttomes	_								
	CO201D.2. apply symmetries and conservation laws in various quantum mechanical problems								
	CO201D.3. ille	ustatre the tin	ne independ	dent and tin	ne depe	ndent pertui	rbation theories,		

variational and WKB methods
CO201D.4. describe the fine structure and Zeeman effect phenomena
CO201D.5. explain the basics of scattering theory
CO201D.6. apply the delta function's properties in various quantum mechanical problems
CO201D.7. understand the basics of relativistic quantum mechanics
CO201D.8. recognize the importance and applications of relativistic quantum mechanics

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
1	Symmetries, Conservation Laws & Identical Particles Transformation in space, The Translation Operator, Translation Symmetry, Conservation Laws, Parity: Parity in One & Three Dimensions; Parity Selection Rules, Rotational Symmetry, Degeneracy, Rotational Selection Rules, Many Particle Systems, Systems of Identical Particles, The Helium Atom, The Pauli Exclusion Principle.	15
2	Approximation Methods Time Independent Perturbation Theory: Nondegenerate Perturbation Theory; Degenerate Perturbation Theory; Fine Structure; The Zeeman Effect, The Variational Method, The WKB method, Time Dependent Perturbation Theory, Adiabatic & SuddenApproximations.	15
3	Scattering Theory & The Delta Function Differential cross-section, scattering of a wave packet, integral equation for the scattering amplitude, Born approximation, method of partial waves, low energy scattering and bound states, resonance scattering, The Delta Function: One Dimensional Delta Function and Three Dimensional Delta Function.	15
4	Relativistic Quantum Mechanics Klein-Gordon equation, Dirac equation, Probability and Current	15

Density, Plane Wave Solutions, Symmetries of the Dirac equation, Dirac's Equation for a Central Potential, Covariance of Dirac's Equation, Relativistic Hydrogen Atom Problem, The Hole Theory and Positrons.

- 1. **L. D. Landau and E.M. Lifshitz**, Quantum Mechanics, Butterworth Heinemann, The Netherlands, 3rd Edition, 1981.
- 2. P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press, UK, 4th Edition, 1988.
- 3. **R. Shankar**, Principles of Quantum Mechanics, Springer, Germany, 2nd Edition, 1994.
- 4. **N. Zettili**, Quantum Mechanics: Concepts and Applications, Wiley, USA, 2nd Edition, 2009.
- 5. **J. J. Sakurai**, Modern Quantum Mechanics, Pearson, India, 2nd Edition, 2013.
- 6. **L. I. Schiff**, Quantum Mechanics, McGraw Hill Education, USA, 4th Edition, 2017.
- 7. **D. J. Griffiths**, Introduction to Quantum Mechanics, Cambridge University Press, UK, 3rd Edition, 2018.
- 8. **C. Cohen-Tannoudji, B. Diu, and F. Laloe**, Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications, Wiley, USA, 2nd Edition, 2019.

Introduction to Astronomy and Astrophysics

Scheme Version:	Name of the subject:	L	T	P	C	Semester:	Contact Hours
2022 24	Introduction					TT (181 X7)	per
2022-24	to Astronomy and					II (1 st Year)	Week: 4 Total
	Astrophysics	3	1	0	4		Hours: 60=45+15
Subject	Applicable to	Evaluation		30		amination	
Code: SBS	Programs:	(Total	CIE	Marks	Du	ration: 3hou	rs
PHY 01 202 DCEC 3104	M.Sc. Physics	Marks: 100)		70	Dr	erequisite: G	anaral
DCEC 3104			TEE	Marks		thematics	ciici ai
Course	To make the stu	dents aware abo	ut diffei	ent theor	etica	l and observa	ational
Description	technique adopte	d in understandi	ng astrop	ohysics ar	nd as	tronomy	
Course Objectives	The objective of this course is to make the students • Understand coordinate systems in Astronomy • Understand the Sun • Understand Binary stars. • Understand stellar distances						
Course	On completion of CO202D.1: diff	,					
Outcomes	CO202D.2 : kno	w about the char	acteristi	cs of Sun	•		
	CO202D.3 : Kno	-					
	CO202D.4 : Kno	ow about stellar COURSE S			her]	properties	
Unit No.		COURSE S Content of E				Hou	rs of Each
Cint 140.		content of E	ach chi	•		1100	Unit
1	Astronomical C Equatorial, Eclin Conversion from sky from different Sidereal. Apparent Calendar. Julia Determination of	etermination of Mass, luminosity, radius, temperature and stance of a star, H-R Diagram, Empirical mass-luminosity					15

	Stellar Distances and Magnitudes Distances of stars from the trigonometric, secular and								
	moving cluster parallaxes. Stellar								
	motions. Magnitude scale and magnitude systems.								
2	Atmospheric extinction. Absolute	15							
	magnitudes and distance modulus. Colour index. Black-body								
	approximation to the continuous								
	radiation and temperatures of stars. Variable stars as distance								
	indicators.								
	Binaries and Variable Stars								
	Visual, spectroscopic and eclipsing binaries. Importance of								
	binary stars as source of basic								
3	astrophysical data. Classification and properties of various	15							
	types of intrinsic and eruptive								
	variable stars. Astrophysical importance of the study of								
	variable stars. Novae and Supernovae.								
	Sun								
	Physical Characteristic of Sun – Basic data, solar rotation,								
4	solar magnetic fields, Photosphere- granulation, sun-spots,	15							
	Babcock model of sunspot formation, solar atmosphere-	13							
	chromospheres and corona, Solar activity - flares,								
	prominences, Solar wind, activity cycle, Helioseismology								
	TEXT ROOKS	TEYT ROOKS							

- 1. **W.M.Smart**: Text book of Spherical Astronomy, Cambridge University Press; 6th edition, 1977
- 2. **M. Zeilik,** Astronomy, The evolving Universe, Cambridge University Press , 1^{st} Edition, 2002.
- 3. **P.V. Foukal,** Solar Astrophysics , Wiley-VCH, United States, 1st Edition, 2004.
- 4. **I. Morrison,** Introduction to Astronomy and Cosmology, Wiley, United States, $1^{\rm st}$ Edition, 2008

FUNDAMENTALS OF SOLAR ENERGY

Scheme	Name of the	L	T	P	С	Semester:	Contact	
Version:	Subject:						hours	
	Fundamentals of						per	
	Solar Energy						week:	
2022-24	Solai Energy						3+1	
		3	1	0	4		Total Hours	
							60= 45+15	
Subject Code:	Applicable to			30	Exan	 nination Dura	ation: 3	
	Programs:		CIE	Marks	hour			
SBS PHY 01								
203 DCEC 3104	M.Sc. Physics	Evaluation				requisite of o		
		(Total				prerequisite o	•	
		Marks): 100	TEE	70		this course.		
				Marks		expected to		
					semio	conductor phy	SICS.	
Course	The course is intende	ed for students	who hav	ve interest	in alte	rnate energy	sources as a	
Description	contributor to sustain	ability. It prov	ides a c	comprehen	sive tr	eatise on the	science and	
	technology of solar	energy, its coll	lection a	and the de	esign p	rinciples that	t need to be	
	understood for its effe	ctive use in a va	ariety of	installatio	ns and	uses.		
Course	The Course w	ill be introducin	ng the stu	udents to a	ll the as	spects of PV to	echnology.	
Objectives		asic understandi						
9		s of solar cells.						
	To know state	of art in the fie	ld of sol	ar cells ma	aterials	and solar cells	S.	
Course	On completion of this	course, student	will lear	rn:				
Outcomes:								
	CO203.1 The available	e solar energy a	nd the cu	ırrent solar	energy	conversion a	nd utilization	
	processes, solar spect	rum.						
	CO203.2 The factors	that influence th	ne use of	Solar radia	ation as	an energy so	urce.	
			.5 650 01	Solai Iudit	wion do	ccg, 500		
	CO203.3 The various	_		_			-	
	energy; have the abil	• • • • • • • • • • • • • • • • • • • •	•	nciples to	selectio	on of an appr	opriate solar	
	energy installation to	meet requiremen	nts.					
	CO203.4 How solar o	ells convert ligh	ht into e	lectricity. l	now so	lar cells are m	nanufactured.	
		CO203.4 How solar cells convert light into electricity, how solar cells are manufactured, how solar cells are evaluated.						
	CO203.5 What techn	ologies are curi	rently or	n the mark	tet, and	l how to eval	uate the risk	

	and potential of existing and emerging solar cell technologies. CO203.6 To examine the potential & drawbacks of currently manufactured technologies, as well as pre-commercial technologies. How to enhance solar cell performance and reduce cost, and the major hurdles-technological and economic, towards widespread adoption.					
	COURSE SYLLABUS					
Unit No.	Content of Each Unit	Hours of Each Unit				
1.	Solar Radiation: origin, solar constant, spectral distribution of solar radiation, absorption of solar radiation in the atmosphere, global and diffused radiation, seasonal and daily variation of solar radiation, measurement of solar radiation, sun tracking systems, photo thermal conversion, solar energy collectors, collector efficiency and its dependence on various parameters.	15				
2.	Solar energy: storage of solar energy, solar pond, solar water heater, solar distillation, solar cooker, solar green houses, solar dryers, absorption air conditioning. solar fuels: electrolysis of water, photoelectrochemical splitting of water.	15				
3.	Fundamentals of solar cells: Photo voltaic effect, semiconductor properties, energy levels, basic equations, p-n junction its characteristics, fabrication steps, thermal equilibrium condition, depletion capacitance, junction breakdown, heterojunction. Silicon based solar cells: single crystal, polycrystalline and amorphous silicon solar cells.	15				
4.	Device physics: Solar cell device structures, construction, output power, efficiency, fill factor and optimization for maximum power, surface structures for maximum light absorption, current voltage characteristics in dark and light, operating temperature vs conversion efficiency, charge carrier generation, recombination and other losses. Cadmium telluride solar cells, copper indium gallium selenide solar	15				

cells, organic solar cells, perovskite solar cells, Advanced	
concepts in photovoltaic research.	

REFERENCE BOOKS

- 1. S P Sukhatme, Solar Energy: Principles of Thermal Collection and Storage, Tata McGraw Hill, 1996.
- 2. Solid State Electronic Devices, Ben. G. Streetman, S. K. Banerjee, PHI Leaning Pvt. Ltd, 2000.
- **3.** D. Yogi Goswami, <u>Frank Kreith</u>, <u>Jan F. Kreider</u>, Principles of Solar Engineering, Taylor and Francis, 2000.
- 4. Jasprit Singh, Semiconductor Devices, Basic Principles, Wiley, 2001
- 5. Stephen J.Fonash, Solar Cell Device Physics, 2nd edition, Academic Press, 2003.
- **6.** H P Garg, J Prakash, Solar energy fundamentals and applications, Tata McGraw Hill publishing Co. Ltd, 2006.

Accelerator Physics

Scheme Version:	Name of the subject:	L	T	P	С	Semester:	Contact hours per	
V CI SI CIII	Accelerator						week: 3+1	
2022-24	Physics						Total Hours:	
2022-24		3	1	0	4	II (1st Year)	60= 45+15	
Carleta at Carla	A 1' 11 4	E14:		30	E			
Subject Code: SBS PHY 01 204 DCEC	Applicable to Programs: M.Sc. Physics	Evaluation (Total	CIE	Marks	Exami	nation Durat	non:3 nours	
3104		Marks: 100)	TEE	70 Marks	Prerequisite of Course: Nuclear Physics, Electrodynamics, Quantum mechanics			
Course Description	This course is intended to expose the students to theoretical design and usage of various particle accelerators.							
Course Objectives	 To understand the beam optics. Get knowledge about different types of accelerators To understand the main features of superconducting cyclotron, linear accelerators and high energy accelerators. 							
	After completion of	of this course, st	udents	would be a	ble to:			
	CO204D.1. Und	erstand the bea	ım opti	cs & bean	n transpo	ort system.		
Course Outcomes	CO204D.2. About various theoretical techniques to accelerate particles and technical details of electrostatic accelerators.							
	CO204D.3. Get knowledge about latest accelerator technology based on Rf cavities.							
	CO204D.4. About	Synchrotron Ra	adiatior	s & produc	ction of ra	adioactive ion	beams.	

COURSE SYLLABUS						
Unit No.	Content of Each Unit	Hours of Each Unit				
1	Charged Particle Dynamics: Particle motion in electric and magnetic fields, Beam transport system, Beam pulsing and bunching techniques, microbeams, Particle and ion sources, secondary beams, Measurement of beam parameters.	15				
2	Electrostatic and Heavy Ion Accelerators: Van de Graaff voltage generator, Cockcroft-Walton voltage generator, insulating column, voltage measurement, Acceleration of heavy ions, Tandem electrostatic accelerator, Production of heavy negative ions, Pelletron and Tandetron, Cluster beams.	15				
3	Radiofrequency Accelerators: Linear accelerators - Resonance acceleration and phase stability, electron and proton Linacs, Superconducting Heavy Ion Linear Accelerators. Circular accelerators- Cyclotron, Frequency Modulated Synchrocyclotron, AVF Cyclotron, Alternating-gradient accelerators.	15				
4	Synchrotron Radiation Sources: Electromagnetic radiation from relativistic electron beams, Electron synchrotron, Characteristics of synchrotron radiation. Production of Radioactive ion beams, Polarized beams, Proton synchrotron, Colliding accelerators.	15				
	TEXT BOOKS					

- 1. M.S. Livingston and J.P. Blewel, Particle Accelerators, McGraw-Hill Book Press, 1962.
- 2. Ed. J. Cerny, Nuclear Spectroscopy and Reactions Part-A, Academic Press, 1974.
- 3. **H.J. Wiedman**, Particle Accelerator Physics, Vol I and II, Springer Verlag, 1998.
- 4. S. Y. Lee, Accelerator Physics, World Scientific, Singapore, 2004

Radiation Physics

Scheme	Name of the	L	T	P	С	Semester:	Contact
Version:	subject:						hours per
	Radiation					-	week: 3+1
	Physics						Total Hours:
2022-24	,	3	1	0	4	II (1 st	60= 45+15
						Year)	
Subject Code:	Applicable to	Evaluation		30	Examination Duration: 3 hours		
SBS PHY 01	Programs:	(TE)	CIE	Marks			
205 DCEC	M.Sc. Physics	(Total					
3104		Marks: 100)		70		-	urse: Nuclear
			TEE	Marks	-	s, Electrodyr	
					Quanti	ım mechanic	S
Course	To impart knowledge in depth about nuclear radiation, its detection, nuclear						
Description	spectrometry and related aspects						
Course Objectives	 To aware the students about the various type of nuclear radiations and their interaction with matter To learn various techniques for detection of radiations To study the nuclear spectrometry 						
	After completion of this course, students would be able to:						
Course Outcomes	CO205D.1. Understand nuclear radiation and its detection procedure, nuclear spectrometry. CO205D.2. Know applications of nuclear spectrometry						
	CO205D.3. Know how to solve problems related to safety aspect of nuclear radiation						
	CO205D.4 Understand the nuclear spectroscopy and basics of nuclear medicine.						
	<u>l</u>						

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit				
1	Interaction of Nuclear Radiations: Origin and energy spectra, Brief discussion of interactions of gamma rays, Electron and heavy charged particles with matter, Different types of neutron sources, Interaction of neutron with matter, Neutron detectors.	15				
2	Nuclear Radiation Detector: Gas filled detectors; Ionization chamber, Proportional counter and GM counter, Scintillation detector, semiconductor detector for X-rays, gamma rays and charged particle detection, Radiation exposure, Biological effects of radiation, radiation monitoring	15				
3	Nuclear Spectrometry and Applications: Analysis of nuclear spectrometric data, measurement of nuclear energy levels, spins, parities, moments, internal conversion coefficients, Angular correlation, Perturbed angular correlation, measurement of g-factor and hyperfine fields.	15				
4	Mossbauer Effect: Positron annihilation, particle and photon induced x-ray emission, Elemental concentration analysis by charged particles and neutron activation analysis, Diagnostic nuclear medicine, Therapeutic nuclear medicine.	15				
	TEXT BOOKS					

- 1. Knoll G. F., Radiation Detection and Measurement, John Wiley & Sons, 1989.
- 2. Singuru R. M., Introduction to experimental nuclear physics, Wiley Eastern Publications, 1987.
- 3. Muraleedhara V. Nuclear radiation Detection, measurement and Analysis, Narosa Publishing House, 2009.

Computational Physics

Scheme Version:	Name of the subject:	L	Т	P	С	Semester	Contact hours per
, , , , , , , , , , , , , , , , , , , ,	Computational						week: 3+1
2022-24	Physics	3	1	0	4	II (1st Year)	Total Hours: 60= 45+15
Subject Co SBS PHY (206 DCEC	- -	Evaluation (Total Marks:	CIE	30 Marks	Examination Duration: 3 hours		
3104		100)	TEE	70 Marks	Prereg	Prerequisite of Course: None	
Course Description		lve integration		he students for various computational ntiation and molecular dynamics			
Course		tudents for com	puter pro	ogramming			
Objectiv	• To make : • To train s	students familia tudents for exec	tudents familiar with simulation techniques udents for executing many body problems related computer programs				
Course Outcome							
		COURSE	ESYLL	ABUS			
Unit No.	. Content of Each Unit					Hours	of Each Unit
1	Stochastic Processes: Theory of random walks and simulation of random walks in one, two and three dimensions. Elementary ideas and simulations of self-avoiding walks, additive and multiplicative stochastic processes, Brownian motion and fractional Brownian motion.					lf-	15

	Numerical Integration and Stochastic Differential Equations:	
2	Dynamical equations, Finite Difference Method, Langevin dynamics, TDGL equation, Cahn-Hilliard equation, Burgers' equation, KPZ model, Traffic Flow Dynamics.	15
	Molecular Dynamics (MD) and Monte Carlo (MC) Simulations: Elementary ideas of molecular dynamics simulation, Physical	
3	potentials, Verlet algorithm. Time average and Ensemble average, Monte Carlo methods, Metropolis algorithm. Application of Montecarlo simulations: (a) Ising model in magnetism (b) Glauber and Kawasaki dynamics.	15
	Combinatorial Optimization Problems:	
	Classification of problems; examples of optimization problems: traveling salesman problem (TSP) and satisfiability (k-SAT) problem; heuristic methods of solutions and simulated annealing technique.	
	Computational experiments using computer programming	
4	 Finite and infinite series Root finding: (bisection, Secant and Newton-Raphson methods), Solving first and second order ordinary differential equations including simultaneous, equations (Euler and Runge-Kutta methods) Numerical integration (trapezoidal, Simpson, Gauss quadrature, methods) Matrices (arrays of variable sizes, addition, multiplication, eigenvalues, eigenvectors, inversion, solutions of simultaneous equations) To determine Wien's constant using bisection method and false position method. 	15
	7. To solve Kepler's equation by Newton-Raphson method.	
	8. To solve van der Waals gas equation for volume of a real gas by the method of successive approximation.	
	9. To interpolate a real data set from an experiment using the Lagrange's method, and Newton's method of forward differences and cubic splines.10. To fit the Einstein's photoelectric equation to a	

- realistic data set and hence calculate Planck's constant. To estimate the value of π by rectangular method, Simpson rule and Gauss quadrature by numerically evaluating suitable integral.
- 11. To find the area of a unit circle by Monte Carlo integration.
- 12. To simulate Buffen's needle experiment.
- 13. To simulate the random walk.
- 14. To study the motion of an artificial satellite by solving Newton's equation for its orbit using Euler method.
- 15. To study the growth and decay of current in RL circuit containing (a) DC source and (b) AC using Runge Kutta method, and to draw graphs between current and time in each case.
- 16. To study the motion of two coupled harmonic oscillators.

- **1. V. Rajaraman,** Computer Oriented Numerical Methods, Prentice Hall of India, 3rd Edition, 1993.
- **2. V. Rajaraman,** Computer Programming in FORTRAN 90/95, Prentice Hall of India, 1st Edition,1997.
- **3. D. Frenkel & B. Smit,** Understanding Molecular Simulation, Academic Press, 2nd Edition.2001.
- **4. M. Plischke & B. Bergersen,** Equilibrium Statistical Physics, World Scientific, 3rd Edition, 2006.
- 1. **W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling,** Numerical Recipes in C/C++: The Art of Scientific Computing, Cambridge University Press, 3rd Edition, 2007.
- 2. M. P. Allen, Computer Simulation of Liquids, Oxford University Press, 2nd Edition, 2017.
- 3. **Kurt Binder and Heerman,** Monte Carlo Simulation in Statistical Physics, Springer, 6th Edition, 2019.

Analog Electronics

Scheme Version:	Name of the subject:	L	T	P	C	Semester:	Contact hours per
version.							week: 3+1
2022-24	Analog Electronics	3	1	0	4	II (1 st Year)	Total Hours: 60= 45+15
Subject Co	de: Applicable to	Evaluatio		30	Exami	nation Dura	ation: 3 hours
SBS PHY 0 207 DCEC		n (Total	CIE	Marks	Prerequisite of Course: None		
3104		Marks: 100)	TEE	70 Marks			
Course Description	The main content equivalent circuit	s are: the bas models for d rs and gain-ba	ic princi _l iodes, tra	oles of opensistors, an	l operation of analog electronic circuits. operation, terminal characteristics, and s, and op-amps. Frequency response of erations. Concepts of feedback, stability		
Course Objective	e		students to entire circuit designs n-depth theoretical base of Digital Electronics				
Course Outcome	S CO207D.1. To un	On completion of the course, student would be able: CO207D.1. To understand the techniques to shape of signals. CO207D.2 To understand the principle of multivibrators					
	CO207D.3 To understand basic properties of analog systems CO207D.4 To understand the fundamental designing concepts of different types of Logic Gates, Minimization techniques etc.						
COURSE SYLLABUS							
Unit No.	Unit No. Content of Each Unit				Hours	of Each Unit	
1	Linear Wave Shapin	g:					15

	High Pass RC circuits: Its response to step, Pulse, Square wave,	
	Ramp, exponential waveforms, Low pass RC Circuit: Its response	
	to step, pulse, Square wave, Ramp, Exponential wave forms, Its application as an integrator. Attenuators, Time base Signal in a	
	CRO. Operation of Clamping Circuits, Clamping Circuit theorem,	
	Practical Clamping Circuit theorem, Operation of Transistor as a	
	switch.	
	Clipping and Switching Circuits: Diode Clippers, Combinational	
	and Biased clippers Transistor Clippers, Comparators, Applications	
	of Voltage Comparators.	
	Multivibrators :	
2	A bistable multivibrator-basic concepts of its operation. Symmetrical and Unsymmetrical triggering, Application (brief). Monostable Multivibrator, Basic concepts of its operation, quantitative discussion of Quasi stable state, Application, Astable	15
	multivibrator - basic concepts of operation. Quantitative discussion of the period of oscillation, Application.	
	Analog Systems:	
3	Operational Amplifier, Differential Amplifier, Transfer Characteristics, Frequency Characteristics, IC Operational Amplifier, Compensation in Operational Amplifiers, Application of OP-AMP as adder, Multiplier, Differentiator, Integrator, Log and Antilog Amplifier, Application of Operational Amplifier to analogue computation.	15
	Logic Systems:	
4	Basic Concepts of dc positive and negative logic systems, Dynamic logic systems, OR gate and AND gate, NOT gate, NAND gate, EX-OR gate, NOR gate & their applications, Response to input pulse operation. TTL (transistor transistor logic) and DTL (diode transistor logic) logics Binary Adders, Half addersand full adders, Multiplexing and demultiplexing.	15
	TEXT BOOKS	

- 1. **P. Horowitz and W. Hill,** The Art of Electronics, Cambridge University Press, 2nd Edition, 1989.
- 2. **J.J. Cathey,** Schaum's Outline of Electronic Devices and Circuits, McGraw Hill Education, New York, 2nd Edition, 2002.
- 3. **R.L. Boylestad and L. Nashelsky**, Electronics Devices and Circuit Theory, Prentice Hall of India, New Delhi, 8th Edition 2003.
- 4. **A.P. Malvino**, Electronic Principles, Tata McGraw, New Delhi, 7th Edition, 2009.
- 5. **J.H. Moore, C.C. Davis and M.A. Coplan**, Building Scientific Apparatus, Cambridge University Press, 4th Edition 2009.

- 6. W. Kleitz, Digital Electronics, A Practical Approach, Pearson, UK, 9th Edition 2011.
 7. R. J. Tocci, Digital Systems-Principles and Applications, Prentice Hall of India, New Delhi, 10th Edition
- Millman and Halkias, Integrated Electronics, McGraw Hill, New York, 2nd Edition, 2017.

Environmental Physics

Scheme	Name of the	L	T	P	С	Semester:	Contact	
Version:	subject:						hours per	
	Envisormental						week: 3+1	
	Environmental Physics						Total	
2022-24	Filysics						Hours:	
		3	1	0	4	II (1st Year)	60= 45+15	
							00-45115	
Subject Code:	Applicable to	Evaluation		30	Exami	nation Durat	ion: 3 hours	
SBS PHY 01	Programs:	(Total	CIE	Marks				
201 GEC 3104	M.Sc. Physics	Marks:						
		100)		70		uisite of Cou	rse: 10+2	
			TEE	Marks	with So	cience		
			עופו ו					
Course	This course aims t	o introduce stu	dents to	the applica	tion of c	ore physical c	oncepts of the	
Description	Earth system, with	-		_	-		-	
	and climate chan	•						
	understand natural	and human inf	fluences	on climate	and atm	ospheric comp	position.	
Course	To understand the broad scope of problems to which the principles of							
Objective		ental physics ca	_	_				
		ng widely varyi	_	_	• •			
	1	p problem solv	ing abili	ties and a c	critical, p	ractical aware	eness ofglobal	
	environme	ental change.						
Course	On completion of	the course, stud	lent wou	ld be able:				
Outcomes	G0202G 1 T	1 . 1 .		. 111		c .		
	forms of energy, c	o understand t		_			s and various	
	Torms or energy, c	illiate change	and its e	nect on nv	ing being	38		
	CO202G.2. To	o understand th	e conce	ots like the	rmodyna	mics and its a	applications to	
	various energy trai	nsformation pro	ocesses:					
	CO202G.3. To	o develop an av	vareness	of climate	change a	and its effects		
	CO202G.4. To	o develop an av	vareness	of differen	ıt fossil f	uels and their	alternatives	
		COURSE	E SYLL.	ABUS				
Unit No.	nit No. Content of Each Unit Hours of Each Unit							
3			v					

1	Introduction to Energy: Importance of energy in science and society. Types of energy (mechanical, heat, chemical, nuclear, electrical). Law of conservation of energy. Energy transformations. Mechanical energy: force, work, kinetic and potential energy, PE diagrams, conservation of mechanical energy, bound systems. Electricity Basics.	15
2	Heat Energy and Kinetic Theory Heat and Tem:perature. Internal Energy, Specific Heat. Ideal gas equation. Kinetic theory interpretation of pressure and temperature. Work, heat, and the first law of thermodynamics. Adiabatic lapse rate. Radiant energy. Blackbody radiation. Heat engines and the second law of thermodynamics. The Carnot cycle. Applications of the second law to various energy transformation processes: heat pumps and refrigerators; different engine cycles. Entropy and disorder.	15
3	Energy and Climate Change: Energy balance of the Earth. Greenhouse effect. Climate feedbacks (water, clouds, ice albedo). Global Climate Models. Evidence for climate change. Paleo-climate. Climate change impacts. Climate change mitigation. Target CO ₂ levels.	15
4	Energy Source [Course Outcome(s): Chemical energy. Energy in biology, photosynthesis, respiration. Energy use in the human body, energy content of food. Fossil fuels and their origin (coal, oil, natural gas). Problems with fossil fuels, greenhouse pollution, peak oil. Alternatives to fossil fuels. Alternative energy resource: Wind energy, energy from water on land, ocean energy. Biomass and other sources.	
1	TEXT BOOKS	

- 1. Sol Wieder, An Introduction of Solar Energy for scientists and Engineers, John Wiley, United States, 1st Edition, 1982.
- 2. J.T. Widell and J. Weir, Renewable Energy Resources, Elbs, 1st Edition, 1988.
- 3. R.N. Keshavamurthy and M. Shankar Rao, The Physics of Monsoons, Allied Publishers, New Delhi, 1st Edition, 1992.
- 4. Landau & Lifshitz, Fluid Mechanics, Pergamon Press, UK, 2nd Edition, 2000.
- 5. Egbert Boeker & Rienk Van Groundelle, Environmental Physics, John Wiley, United States, 2nd Edition, 2000.
- **6. J.T. Hougtyion**, The Physics of Atmosphere, Cambridge University Press, 3rd Edition, 2002.
- 7. C. W. Rose, An Introduction to the Environmental Physics of Soil, Water and Watersheds, Cambridge University Press, 1st Edition, 2004.
- 8. R. A. Hinrichs and M. Kleinbach, Energy, Its Use and the Environment, Brooks Cole, Stanford University Press, 4th Edition, 2005.

- **9. P. Hughes**, **N. J. Mason**, Introduction to Environmental Physics: Planet Earth, Life and Climate, Taylor & Francis, France, 1st Edition, 2005.
- **10. J. Monteith** and **M. Unsworth**, Principles of Environmental Physics: Plants, Animals and the Atmosphere, Elsevier, 4th Edition, Europe, 2013.
- 11. K.L. Kumar, Engineering Fluid Mechanics, S. Chand, New Delhi, 4th Edition, 2016.

Latex for Humans

Scheme Version:	Name of the subject:	L	Т	P	С	Semester:	Contact Hours	
2022-24	Latex for Humans	1	0	2	2	II (1st Year)	per Week: 2 Total	
	Humans	1	U	2			Hours:	
Subject	Applicable to	Evaluation		15	Exam	ination Dura	tion: 2	
Code: SBS	Programs: All	(Total	CI	Marks	hours			
PHY 01 202	Masters/	Marks: 50)	E					
GEC 1022	Bachelors			35	Prere	quisite: 10+2	with Non-	
	Program		TE E	Marks	Medio	cal		
Course	To impart knowl	edge to studen	t about	different	tools us	sed in writing		
Description	scientific/non-sci	entific literatu	re.			_		
Course	Write beautifull	y presentable	docun	nents usin	g Later	Κ.		
Objectives								
Course Outcomes	CO202G.1 : Write CO202G.2 : Write CO202G.3 : Pro CO202G.4 : Write CO202G.5 : Tell softwares. CO202G.6 : inst	CO202G.6: install and use MikTeX. CO202G.7: List LaTeX compatible operating systems.						
		COURSE	SYLL	ABUS				
Unit No.		Content of	Each 1	Unit		Hou	rs of Each Unit	
1	Software installa	tion, Markup L	_angua	ges			5	
2	LATEX typesetti	ng basics, LAT	ГЕХ т	ath typese	tting		10	
3	Tables and matri	ces, Graphics,	Packa	ges, User	definab	le	7	
4						_	8	

Document classes, text bibTEX, beamer, flash cards / CV,	
Creating your own package, Project.	

Text Books

- 1. **Helmut Kopka & Patrick W. Daly,**Guide to LATEX, Addison-Wesley, New Delhi, 4th Edition 2003.
- 2. **Stefan Kottwitz**, LaTeX Beginner's Guide, Packt Publishing, UK. 1st Edition, 2011
- 3. Resources from websites:

The not so short introduction to LaTeX - Tobi Oetiker

https://tobi.oetiker.ch/lshort/lshort.pdf

Atomic, Molecular Physics and Lasers

Scheme	Name of the	L	T	P	C	Semes	ster:	Contact
Version:	subject:							Hours
	Atomic,							per
2022-24	Molecular					III		Week: 4
	Physics and					(2 nd Y	ear)	Total
	Lasers	3	1	0	4			Hours:
								60=45+15
Subject	Applicable to	Evalu		30	_	ination	Durat	ion: 3
Code: SBS	Programs:	ation	CIE	Marks	hours			
PHY 01 301	M.Sc. Physics	(Total		70		_		ematical
CC 3104		Mark	TEE	Marks		ods in P		
		s:			_	tum Me		· ·
		100)				tical Mo		
Course	Aim of the cour	rse is to	aware stud	ents abou	t variou	is atom	ic and	molecular
Description	spectra and to un	derstand	the working	of LASEI	Rs.			
Course			be exposed to					
Objectives			oration spect	1.0		_		
			id Raman sp	ectroscopy	of mol	ecules.		
	. Working							
	On completion of		ŕ					
	CO301C.1 : Und							
Course	CO301C.2 : deri	ve the en	ergy distribu	ition corre	spondin	ig to dif	ferent	levels of
Outcomes	an atom							
	CO301C.3 : Und	lerstand 1	rotation spec	troscopy a	nd Und	erstand	Ramai	n Effect
	and Raman spect							
	CO301C.4: und	erstand tl	he working o	of He-Ne I	Laser an	d Ruby	Laser.	
		COU	RSE SYLL	ABUS				
Unit No.		Conte	nt of Each	Unit			Hour	s of Each
								Unit
	Atomic Spectra	I:						
	Review of Ator	mic Mod	dels: Ruther	rford's M	odel, E	Bohr's		
	model, Sommerf	feld's mo	odel, Stern-C	Gerlach ex	perime	nt for		
1	electron spin. I	Revision of quantum numbers exclusion						15
1	principle, electro	nic conf	iguration. R	elativistic	correcti	on to		1.3
	energy levels of	an atom	, atom in a	weak unit	form ex	ternal		
	electric field – fii	rst and se	cond order S	Stark effec	t.			

2	Atomic Spectra II: Spin-orbit interaction and fine structure, LS and JJ coupling, Relativistic correction to spectra of hydrogen atom, Lamb shift, effect of magnetic field on the hydrogen atom spectra, Zeeman and Paschen-Back effect. Hyperfine structure and isotope shift, Auger Effect and Frank Condon Principle. Born- Oppenheimer approximation.	15					
3	Molecular spectra: Rotational levels in diatomic and polyatomic molecules, vibrational levels in diatomic and polyatomic molecules, diatomic vibrating rotator, Born-Oppenheimerapproximation, Vi vibrational levels, experimental aspects of vibrational and rotational spectroscopy of molecules, polarization of light and Raman effect, Raman Spectroscopy (Brief Introduction).	15					
4	Lasers: Spontaneous and stimulated emission, Spatial and temporal Coherence, Einstein A and B coefficients, Optical Pumping, Population Inversion, Modes of resonator, Qswitching and Mode Locking, Ultra short pulse generation, He-Ne Laser and Ruby Laser- Principle, Construction and working, Application of lasers in the field of medicine and Industry.	15					
	Text Books						

1 ext Books

- 1. H. E. White, Introduction to Atomic Spectra, McGraw Hill, New York, 1st Edition, 1934.
- **2. H. G. Kuhn,** Introduction to Atomic Spectra, Green and Co., Harlow, 2nd Edition, 1969.
- **3. K. Thyagarajan and A.K. Ghatak,** Lasers Theory and Applications, Plenum Press, New York, 1st Edition, 1981.
- **4. B. H.Bransden and C. J Joachain,** Physics of Atoms and Molecules, Pearson, UK, 2nd Edition, 2003.
- **5. R. Eisberg and R. Resnick,** Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, Wiley, United States, 2nd Edition, 2006.
- **6. Arthur Beiser,** Perspectives of Modern Physics, McGraw Hill, New York, 6th Edition, 2006.
- **7.** C. N. Banwell, Fundamentals of Molecular Spectroscopy, McGraw Hill, New York, 4th Edition, 2017.

NUCLEAR PHYSICS

Scheme Version:	Name of the subject:	L	Т	P	C	Semester:	Contact Hours per
2022-24	Nuclear and Particle Physics	3	1	0	4	III (2 nd Year)	Week: 3+1 Total Hours: 60=45+15
Subject Code: SBS PHY 01	Applicable to Programs:	Evaluatio n	CIE	30 Marks	Exami	nation Durat	ion: 3 hours
302 CC 3104	M.Sc. Physics	(Total Marks: 100)	TEE	70 Marks	Mather	uisite of Cou natical Physic m Mechanics	
Course Description	This course will properties of nuc learn about the e	lei, radioactiv	e decays,	nuclear fo			
Course Objectives	Students will be exposed to General properties of nuclei Interactions among the nucleons Different models developed to explain the nuclear structure Elementary classification of particles and their properties						
Course Outcomes	After completion of this course, the students will be able to CO302C.1. Understand basic properties of nuclei CO302C.2. Understand interactions between nucleons, meson theory and spin dependence of nuclear forces CO302C.3. Get knowledge about Nuclear models, Magic numbers, and Collective nuclear model. Elementary knowledge about classification of particles. CO302C.4. Classify the particles and will be able to understand their properties.						
		COURS	E SYLL	ABUS			
Unit No.			nt of Eac	ch Unit			Hours of Each Unit
1	Introductory Concept of Nuclei: Scattering and electromagnetic methods for determining the nuclear radius, Nuclear angular momentum, Nuclear magnetic dipole moment and Electric quadruple moment, Parity quantum number, Statistics of nuclear particles, Nuclear Disintegration: Simple theories of alpha, beta and gamma decay, Properties of neutrino, Non conservation of parity and Wu's experiment in beta decay, Electron capture, Internal					15	
2	Inter Nucleon Forces: Properties and simple theory of the deuteron ground state, Spin dependence and tensor component of nuclear forces, Nucleon-nucleon scattering at low energy, Charge-independence of nuclear forces, Many–nucleon systems and saturation of nuclear forces, Exchange forces, Elements of meson theory.						15

Nuclear Structure and Models: Fermi gas model, Experimental evidence for shell structure in nuclei, Basic assumption for shell model, Single- particle energy levels in central potential, Spin-orbit potential and prediction of magic numbers, Extreme single- particle model, Prediction of angular moment, Parities and magnetic moment of nuclear ground states, Liquid drop model, Semi-empirical mass formula, Nuclear fission, The unified model, rotational model. Nuclear Reactions: Types of nuclear reactions, conservation laws, energetic of nuclear reactions, cross-section, partial cross-section, compound nucleus, principle of detailed balance, Breit-Weigner formula, nuclear reaction mechanism, heavy ion reactions at low and intermediate energies. Particle Physics: Properties and origin, Elementary particles, Properties, classification, type of interactions and conservation laws, Properties of mesons, Resonance particles, Strange particles and Strangeness quantum number.			
energetic of nuclear reactions, cross-section, partial cross-section, compound nucleus, principle of detailed balance, Breit-Weigner formula, nuclear reaction mechanism, heavy ion reactions at low and intermediate energies. Particle Physics: Properties and origin, Elementary particles, Properties, classification, type of interactions and conservation laws, Properties of mesons, Resonance particles, Strange particles and	3	Fermi gas model, Experimental evidence for shell structure in nuclei, Basic assumption for shell model, Single- particle energy levels in central potential, Spin-orbit potential and prediction of magic numbers, Extreme single- particle model, Prediction of angular moment, Parities and magnetic moment of nuclear ground states, Liquid drop model, Semi-empirical mass formula, Nuclear fission, The unified model, rotational model.	15
	4	energetic of nuclear reactions, cross-section, partial cross-section, compound nucleus, principle of detailed balance, Breit-Weigner formula, nuclear reaction mechanism, heavy ion reactions at low and intermediate energies. Particle Physics: Properties and origin, Elementary particles, Properties, classification, type of interactions and conservation laws, Properties of mesons, Resonance particles, Strange particles and	15

- 1. Roy & Nigam, Nuclear Physics, John Wiley & Sons, USA, 1st Edition, 1967.
- **2. H. Enge,**Introduction to nuclear Physics, Addison Wesley, USA, 1st Edition 1969.
- **3. J.M. Blatt and V.F. Weisskopf,** Theoretical Nuclear Physics, Springer, Germany, 1st Edition, 1969.
- **4. M.Leon,**Particle Physics: An introduction, Elsevier, Netherlands, 1st Edition, 1973.
- **5. S. N. Ghoshal**, Nuclear Physics, S. Chand, India, 1st Edition, 1994.
- **6. F.I. Stancu,** Group Theory in Subnuclear Physics, Clarendon Press, UK, 1st Edition, 1997.
- **7. J.D. Walecka,**Theoretical Nuclear and Subnuclear Physics, World Scientific, Singapore, 2nd Edition, 2004.
- **8. B. R. Martin and G. Shaw,**Particle Physics, John Wiley & Sons, USA, 3rd Edition, 2008.

SOLID STATE PHYSICS

Scheme	Name of the	L	T	P	C	Semester:	Contact
Version:	subject:						hours per
	Solid State Physics						week: 3+1
	Filysics						
2022-24						III	Total Hours:
		3	1	0	4	(2 nd Year)	60=45+15
		3	1		_		
Subject Code:	Applicable	Evaluatio	CIE	30	Exami	nation Dura	ation: 3 hours
SBS PHY 01	to	n		Marks			
303 CC 3104	Programs:	(Total	TEE	70	Dı	rerequisite o	of Course
	M.Sc.	Marks:		Marks		_	el Solid State
	Physics	100)			Physic	es and Quant	um Mechanics
C	771 1:1	1 ' ' .1	1 1 0 1	' 1 1'	1.1	1 ' 1	
Course Description			•	-			perties of solids The course solid
Description	1 2	•	U				albreakthrough
	* •	•	•			•	bonding, free
	electrons theor	•		•		•	
		1 . 1.1	6 1			1	1111
				_			as direct lattice, , band formation
Course			e mass, and suj			iout of include	, ound formation
Objectives		1 1 .1	1	•.••		1 . 1 . 1	
		_	cientific and po a part of solid s		des in sti	idents related	to the materials
	• To	able the stude	nts for solve the	e problems r	elated to	solid state phy	ysics
	At the end of the	nis course, the	students wil	l be able to			
	G0303G 1 : 1	c ·	. 1	1.4			• 1
Course	CO303C.1. ide	entify various	crystal struct	ures and th	eir symn	netries in soi	ias
Outcomes	CO303C.2. de	termine the o	erystal structu	re through	X-ray c	liffraction, re	otating crystal,
	and						Laue
	m	ethods					
	CO303C.3. ex	plain the the	ories and phe	nomena of	lattice d	lynamics, va	rious bonding.
	and	•				-	5,

thermal properties (specifically specific heat) in solids CO303C.4. calculate the specific heat and density of states of various solids CO303C.5. interpret the electrical conductivity and resistivity, mean free path, relaxation time, Fermi energy, electronic specific heat, and band formation in solids CO303C.6. recognize the importance of effective mass, nearly free-electron model and tight binding approximation **CO303C.7.** identify the basic differences between conductors and superconductors CO303C.8. illustrate the some exciting phenomena such as Meissner effect, Isotope effect, London's equations, BCS theory, and Josephson effect of superconductors **CO303C.9.** understand the basics of high temperature superconductors and commercial applications of superconductors

COURSE SYLLABUS

Unit No.	it No. Content of Each Unit			
		Unit		
1	Crystal Structure: Crystal Structures and Lattices with Basis, Miller Indices, Common Crystal Structures, Reciprocal Lattice, Brillouin Zones, X-ray Diffraction by a Crystal and Their Equivalence, Laue Equations, Ewald Construction, Brillouin Interpretation, Intensity of X-ray Reflections: Atomic Scattering Factor; Geometrical Structure Factor, Structure Factors, Structure Factor; Experimental Methods of Structure Analysis: Laue's Method; Rotating Crystal Method; Powder Method, Diffraction from Non-Crystalline Systems.	15		
2	Lattice Dynamics, Crystal Binding and Thermal Properties: Classical Theory of Lattice Dynamics: Vibrations of Crystals with Monatomic Basis and Two Atomic Basis; Dispersion Relation; Group Velocity; Acoustical and Optical modes, Bonding in Solids, Elastic Constants and Properties, Phonons: Quantization of Lattice Vibration; Phonon Momentum; Inelastic Scattering of Neutrons by	15		

	Phonons, Thermal Properties: Heat Capacity; Density of States;	
	Normal Modes; Debye and Einstein Models.	
3	Free Electrons and Energy Band in Solids: Free Electron Gas Model and Its Limitations, Electrons Moving in One and Three Dimensional Potential Well, The Density of States, Fermi Energy, Effect of Temperature on Fermi Distribution Function, The Electronic Specific Heat, The Electrical Conductivity of Metals, Relaxation Time and Mean Free Path, The Electrical Resistivity, Band Theory: Bloch Theorem; The Kronig-Penny Model; Symmetry Properties of the Energy Function; Effective Mass of an Electron; The Nearly Free Electron Model and Tight Binding Approximation; Metals; Insulators and Semiconductors.	15
4	Superconductivity: Introduction to Superconductivity, Effect of Magnetic Field, The Meissner Effect, Type I and Type II Superconductors, Entropy, Free Energy, Heat Capacity, Energy gap, Isotope Effect, Thermodynamics of the Superconducting Transition, London Equation and Penetration Depth, Coherence Length, BCS Theory of Superconductivity, Cooper Pair, Flux Quantization, DC and AC Josephson Effects: SQUIDs, High Temperature Superconductivity, Applications of Superconductors.	15
	TEXT BOOKS	

- 1. **J. M. Ziman**, Principles of the Theory of Solids, Cambridge University Press, UK, 2nd Edition, 1979.
- 2. **J. F. Annett**, Superconductivity Super fluids and Condensates, Oxford University Press, UK, 1st Edition,
- 3. **J. P. Srivastava**, Elements of Solid State Physics, Prentice-Hall of India, 2nd Edition, 2006.
- 4. **H. Ibach and H. Luth**, Solid State Physics: An Introduction to Theory and Experiment, Springer, Germany, 4th Edition, 2009.
- 5. **M. A. Wahab**, Solid State Physics: Structure and Properties of Materials, Narosa Publications, India, 2nd Edition, 2009.
- 6. **C. Kittel**, Introduction to Solid State Physics, John Wiley and Sons, USA, 8th Edition, 2012.
- 7. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, USA, Revised Edition, 2016.
- 8. **S. O. Pillai,** Solid State Physics, New Age International Publishers, 8th Edition, 2018.

LABORATORY-III

Scheme Version:	Name of the subject: Laboratory-III	L	Т	P	С	Semester:	Contact Hours per Week: 12
2022-24		0	0	12	6	III (2 nd Year)	Total Hours: 180
Subject Code:	Applicable to	Evaluatio		30	Evemir	 nation Duratio	n. 2 hours
SBS PHY 01	Programs:	Evaluado n		Marks	Examin	ianon Durano	n. 5 nours
304 CC 00126	1 Tograms.	11	CIE	Warks			
301 00 00120	M.Sc. Physics	(Total		70	Duonog	vigita of Cours	o. None
		Marks: 100)	TEE	Marks	Prerequisite of Course: None		
Course	Aim of Lab III is	s to train stude	ents for ac	lvanced pr	actical re	lated to solid st	ate physics,
Description	Aim of Lab III is to train students for advanced practical related to solid state physics, nuclear physics, electronics, numerical techniques and material science.						
	Each student is required to perform at least five experiments from Section A and at least three experiments from any one of the optional subtopics of Section B: (i) Electronics (ii) Thin Film and Nano-Material (iii) Numerical Techniques; depending upon the courses opted under discipline centric elective course						B: (i)
Course	• To t	rain students	on adva	nced exp	eriments		
Objectives	• To §	give training	on advai	nce instru	ments		
	• To i	ntroduce stu	dents to	latest nun	nerical te	echniques	
	After completion	n of this course	e, the stud	dents will	be able to		
Course Outcomes	After completion of this course, the students will be able to CO304C.1. Apart from some experiments based on nuclear physics, electronics, computation and solid state physics. CO304C.2. To understand the basic synthesis and characterization techniques for different materials such as thin films and nanoparticles. CO304C.3. students will also perform the advance experiments like DTA, TGA, UV-						
	VIS, Microwave	Turnace and t	nin film c	coating tec	nnıques.		

	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Uni
1	 Kerr Effect Curie Temperature B-H curve Dielectric constant Solid State Nuclear Track Detector (SSNTD) G.M. Counters: characteristics, dead time and counting statistics Scintillation detector-energy calibration, resolution and determination of gamma ray energy Quinks tube method to find susceptibility of a material Nuclear Magnetic Resonance Zeeman Effect To study Lattice Dynamics 	100
2	 (i) Electronics PCM/delta modulation and demodulation Fiber optic communication Modulation/Demodulation 4-bit ripple counter (ii) Thin Film and Nano-Material Data Analysis of XRD, SEM and TEM Chemical Deposition (for CNT growth) ZnO wire by thermal oxidation Band gap estimation by Tauc-plot method Thin film deposition technique DTA/TGA analysis (iii) Numerical Techniques Solution of Linear algebraic equation: Gauss Jordon elimination, Singular Value Decomposition, Sparse linear system. Evaluation of Functions: special functions, evaluation of functions by path integration, incomplete gamma, beta function. Random Numbers: Uniform random numbers generators, statistical distributions and their properties, Rejection Methods, transformation method, simple Monte Carlo integration, Adaptive and recursive Monte Carlo methods, Test of randomness. Signal Processing: FFT, IFFT, Filtering with FFT, convolution and correlation functions, application to real time series data. 	80

5. Eigen systems: Solving eigenvalues and finding eigen functions of Schrodinger equation for analytically unsolvable potentials using variational principle.

- 1. Albert Malvino, Digital Principles and Applications, McGraw Hill, New York, 4th Edition, 1986.
- **2. A. C. Melissinos, J. Napolitano,** Experiments in Modern Physics, Academic Press, Cambridge, Massachusetts, 2nd Edition, 2003.
- 3.**W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling,** Numerical Recipes in C/C++: The Art of Scientific Computing, Cambridge University Press, 3rd Edition, 2007.
- **4. J. P. Sethna,** Statistical Mechanics: Entropy, Order Parameters, and Complexity, Oxford University Press, 2nd Edition, 2007.
- **5. E. Balagurusamy,** Numerical Methods, Tata McGraw Hill, New Delhi, 1st Edition, 2017.

SEMINAR PRESENTATION

Scheme Version:	sub	of the ject:		L	T	P	C	Semester:	Contact Hours per Week: 02	
2022-24	PRESE	INAR NTATIO N		0	2	0	2	II (2 nd Year)	Total Hours: 30	
Subject Code:	Applica	ble to		Evalu		15	Exam	⊥ ination Durat	ion: 20	
SBS PHY 01 305 CC 2002	Progran	ns:		ation	CIE			Minutes Prerequisite of Course: None		
	M.Sc. Pl	nysics		(Total Marks : 50)	TEE	35 Marks	Prerec			
Course Description		of curre	nt interes	t. A depa			-		ers and topics cs according	
Course Objectives		•	• To ma	ke studen	t capable of i	ndependen	nt thinkin	~	у	
Course Outcomes		 Students will learn basic techniques for carrying out research After completion of this project, students will be able to learn about: CO305.1. Basic of literature review CO305.2. Techniques used for performing research CO305.3. Analyze the results and tabulate them in a proper manner CO305.4. How to write and dissertation, making presentation and viva etc. 								

Evaluation: The evaluation will be done internal committee constituted by Head of the Department. Internal marks will be given by the mentor allotted to each candidate.

Research and Publication Ethics

Scheme	Name of the		L	T	P	С	Semester:	Contact	
Version:	subject:							Hours per	
	Research and							Week: 2	
2022-24	Publication Ethics		2	0	0	2	III (2 nd Year)	Total Hours: 30	
Subject Code:	Applicable to		Evalu		15	Exami	nation Durati	on: 1.5	
SBS PHY 01 306 CC 2002	Programs:		ation	CIE	Marks	Hours			
	M.Sc. Physics		(Total Marks		35	Prerec	uisite of Cour	se: None	
			: 50)	TEE	Marks				
Course	•		in student	for research	20 1				
Objectives	On comp			ts aware of II		hle to:			
Course									
Outcomes	CO306D.1: Understand the basic ethics of research. CO306D.2: Maintain the research integrity and intellectual honesty.								
							d proper citation		
				e knowledge				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			cot	JRSE SYLL	ABUS				
Unit No.			Conte	ent of Each U	Jnit		Hou	rs of Each Unit	
1	Theory:							15	
	RPE 01:	Philosopl	ny and Eth	ics (3 hrs.)					

	4 7 4 4 4 4 4 4 4 4 4 4	
	1. Introduction to philosophy: definition, concept, branches, nature and scope,	
	2. Ethics: definition, moral philosophy, nature of moral	
	judgements and reactions	
	J	
	RPE 02: Scientific Conduct (5 hrs.)	
	1. Ethics with respect to science and research	
	2. Intellectual honesty and research integrity	
	3. Scientific misconducts: Falsification, Fabrication, and	
	Plagiarism (FFP)	
	4. Redundant publications: duplicate and overlapping	
	publications, salami slicing	
	5. Selective reporting and misrepresentation of data	
	RPE 03: Publication Ethics (7 hrs.)	
	1. Publication ethics: definition, introduction and importance	
	2. Best practices/standards setting initiatives and guidance:	
	COPE, WAME, etc.	
	3. Conflicts of interest	
	4. Publication misconduct: definition, concept, problems that	
	lead to unethical behavior and vice versa, types	
	5. Violation of publication ethics, authorship and	
	contribution-ship	
	6. Identification of publication misconduct, complaints and	
	appeals	
	7. Predatory publishers and journals	
	Practice: RPE 04: Open Access Publishing (4 hrs.)	
	1. Open access publications and initiatives	
	2. SHERPA/RoMEO online resource to check publisher	
	copyright & self-archiving polices	
	3. Software tool to identify predatory publications developed	
	by SPPU	
	4. Journal finder / journal suggestion tools viz. JANE,	
2	Elsevier Journal Finder, Springer Journal Suggester, etc.	15
	DDE 05. Dublication Misson dust (4 hrs.)	
	RPE 05: Publication Misconduct (4 hrs.) A. Group Discussion (2 hrs.)	
	1. Subject specific ethical issues, FFP, authorship	
	2. Conflicts of interest	
	3. Complaints and appeals: examples and fraud from India	
	and abroad	
	l ·	

_		· · · · · · · · · · · · · · · · · · ·	
		B. Software tools (2 hrs.)	
		1. Use of plagiarism software like Turnitin, Urkund and	
		other open source software tools	
		RPE 06: Databases and Research Metrics (7 hrs.)	
		A. Databases (4 hrs.)	
		Indexing databases Research Metrics	
		2. Citation databases: Web of Science, Scopus, etc.	
		B. Research Metrics (3 hrs.)	
		1. Impact Factor of journal as per Journal Citation Report,	
		SNIP, SJR, IIP, Cite Score	
		2. Metrics: h index, g index, i10 index, almetrics	
		2. Would, I made, g made, 110 made, ametrics	
		TEXT BOOKS	
	1		Research and
	1.	Indian National Science Academy (INSA), Ethics in Science Education, I	
	1.		
		Indian National Science Academy (INSA), Ethics in Science Education, I Governance, 2019, ISBN:978-81-939482-1-7. http://www.insaindia.res.in/pdf/	Ethics_Book.pdf
		Indian National Science Academy (INSA), Ethics in Science Education, I Governance, 2019, ISBN:978-81-939482-1-7. http://www.insaindia.res.in/pdf/ Chaddah, P., Ethics in Competitive Research: Do not get scooped; do not get	Ethics_Book.pdf
	2.	Indian National Science Academy (INSA), Ethics in Science Education, I Governance, 2019, ISBN:978-81-939482-1-7. http://www.insaindia.res.in/pdf/ Chaddah, P., Ethics in Competitive Research: Do not get scooped; do not get ISBN:978-9387480865.	Ethics Book.pdf et plagiarized 2018,
	2.	Indian National Science Academy (INSA), Ethics in Science Education, I Governance, 2019, ISBN:978-81-939482-1-7. http://www.insaindia.res.in/pdf/ Chaddah, P., Ethics in Competitive Research: Do not get scooped; do not get ISBN:978-9387480865. Beall, J. Predatory publishers are corrupting open access, Nature, 489 (741)	Ethics Book.pdf et plagiarized 2018,
	2.3.	Indian National Science Academy (INSA), Ethics in Science Education, I Governance, 2019, ISBN:978-81-939482-1-7. http://www.insaindia.res.in/pdf/ Chaddah, P., Ethics in Competitive Research: Do not get scooped; do not get ISBN:978-9387480865. Beall, J. Predatory publishers are corrupting open access, Nature, 489 (741 https://doi.org/10.1038/489179a	Ethics Book.pdf et plagiarized 2018, 15), 179-179, 2012.
	2.3.	Indian National Science Academy (INSA), Ethics in Science Education, I Governance, 2019, ISBN:978-81-939482-1-7. http://www.insaindia.res.in/pdf/ Chaddah, P., Ethics in Competitive Research: Do not get scooped; do not get ISBN:978-9387480865. Beall, J. Predatory publishers are corrupting open access, Nature, 489 (741)	Ethics Book.pdf et plagiarized 2018, 15), 179-179, 2012.
	2.3.	Indian National Science Academy (INSA), Ethics in Science Education, I Governance, 2019, ISBN:978-81-939482-1-7. http://www.insaindia.res.in/pdf/ Chaddah, P., Ethics in Competitive Research: Do not get scooped; do not get ISBN:978-9387480865. Beall, J. Predatory publishers are corrupting open access, Nature, 489 (741 https://doi.org/10.1038/489179a Resnik, D. B., What is ethics in research and why is it important, National Institute of the control o	Ethics Book.pdf et plagiarized 2018, 15), 179-179, 2012. itute of
	2. 3. 4.	Indian National Science Academy (INSA), Ethics in Science Education, I Governance, 2019, ISBN:978-81-939482-1-7. http://www.insaindia.res.in/pdf/ Chaddah, P., Ethics in Competitive Research: Do not get scooped; do not get ISBN:978-9387480865. Beall, J. Predatory publishers are corrupting open access, Nature, 489 (741 https://doi.org/10.1038/489179a Resnik, D. B., What is ethics in research and why is it important, National Inst Environmental Health Sciences, 1-10. Retrived from https://www.neihs.nih.gov/research/resources/bioethics/whatis/index.cfm 201	Ethics Book.pdf et plagiarized 2018, 15), 179-179, 2012. itute of 1.
	2. 3. 4.	Indian National Science Academy (INSA), Ethics in Science Education, I Governance, 2019, ISBN:978-81-939482-1-7. http://www.insaindia.res.in/pdf/ Chaddah, P., Ethics in Competitive Research: Do not get scooped; do not get ISBN:978-9387480865. Beall, J. Predatory publishers are corrupting open access, Nature, 489 (741 https://doi.org/10.1038/489179a Resnik, D. B., What is ethics in research and why is it important, National Inst Environmental Health Sciences, 1-10. Retrived from https://www.neihs.nih.gov/research/resources/bioethics/whatis/index.cfm 201 National Academy of Sciences, National Academy of Engineering and Institutional Academy of Sciences, National Academy of Engineering and Institutional Academy of Sciences, National Academy of Engineering and Institutional Academy of Engineeri	Ethics Book.pdf et plagiarized 2018, 15), 179-179, 2012. itute of 1. ute of Medicine, On
	2. 3. 4.	Indian National Science Academy (INSA), Ethics in Science Education, I Governance, 2019, ISBN:978-81-939482-1-7. http://www.insaindia.res.in/pdf/ Chaddah, P., Ethics in Competitive Research: Do not get scooped; do not get ISBN:978-9387480865. Beall, J. Predatory publishers are corrupting open access, Nature, 489 (741 https://doi.org/10.1038/489179a Resnik, D. B., What is ethics in research and why is it important, National Inst Environmental Health Sciences, 1-10. Retrived from https://www.neihs.nih.gov/research/resources/bioethics/whatis/index.cfm 201 National Academy of Sciences, National Academy of Engineering and Institute Being a Scientist: A Guide to Responsible Conduct in Research: 3 rd edition, 1	Ethics Book.pdf et plagiarized 2018, 15), 179-179, 2012. itute of 1. ute of Medicine, On
	2. 3. 4.	Indian National Science Academy (INSA), Ethics in Science Education, I Governance, 2019, ISBN:978-81-939482-1-7. http://www.insaindia.res.in/pdf/ Chaddah, P., Ethics in Competitive Research: Do not get scooped; do not get ISBN:978-9387480865. Beall, J. Predatory publishers are corrupting open access, Nature, 489 (741 https://doi.org/10.1038/489179a Resnik, D. B., What is ethics in research and why is it important, National Inst Environmental Health Sciences, 1-10. Retrived from https://www.neihs.nih.gov/research/resources/bioethics/whatis/index.cfm 201 National Academy of Sciences, National Academy of Engineering and Institute Being a Scientist: A Guide to Responsible Conduct in Research: 3 rd edition, 1 Press 2009. Bird, A., Philosophy of Science, Routledge 2006.	Ethics Book.pdf et plagiarized 2018, 15), 179-179, 2012. itute of 1. ute of Medicine, On

Physics of Electronic Material and Devices

Scheme Version:	Name of the subject: Physics of	L	Т	P	С	Semester:	Contact hours per week: 3+1		
2022-24	Electronic Material and Devices	3	1	0	4	II (2 nd Year)	Total Hours: 60=45+15		
Subject Code: SBS PHY 01 301 DCEC	Applicable to Programs: M.Sc. Physics	Evalu ation	CIE	30 Marks	Examination Duration: 3 hours				
3104		(Total Marks : 100)	TEE	70 Marks	Prerec	Prerequisite of Course: None			
Course Description	This course intends to provide knowledge about band structure and electronic properties of semiconducting materials. In addition, this course aims to provide a detailed theory and design of electronic, microwave and photonics devices.								
Course Objective	•		amental knov and their appl	•	expose to	o the field of s	semiconductor		
Course Outcomes	*								
	CO301D.4. To un semiconducting de		0.	U	• •		S		
	I	COU	JRSE SYLL	ABUS					
Unit No.		C	Content of Ea	nch Unit			Hou rs		

		of Each Unit
1	Fundamentals of Semiconductors: Carrier concentration of semiconductor, Transport Equations, Fundamentals of Compound Semiconductors: Introduction of Compound Semiconductors, Properties of Compound semiconductors, Synthesis of Compound Semiconductors. Crystal structures of Elemental and III-IV	15
2	Carrier mobility in semiconductors: Electron and Hole conductivity in semiconductors, Shallow impurities in semiconductors (Ionization Energies), Deep Impurity states in semiconductors, Carrier Trapping and recombination/generation in semiconductors, Shockley read theory of recombination, Switching in electronic devices.	15
3	Metal-semiconductor, Metal-Insulator-Semiconductor and MOS devices: Native oxides of Compound semiconductors for MOS devices and the interface state density related issues. Metal semiconductor contacts, Schottky barrier diode, Metal semiconductor Field Effect Transistors (MESFETs): Pinch off voltage and threshold voltage of MESFETs. D.C. characteristics and analysis of drain current. Velocity overshoot effects and the related advantages of GaAs, InP and GaN based devices for high speed operation. Sub threshold characteristics, short channel effects and the performance of scaled down devices.	15
4	High Frequency Devices: Essential Condition of High frequency device and compound semiconductor, Tunnel diode, MIS Tunnel diode, Degenerate and Non-degenerate semiconductor, MIS switch diode, MIM Tunnel diode. IMPATT diode. Characteristics, breakdown Voltage, Avalanche Region and Drift Region, Transferred electron devices. Photonic devices: LED and LASER, Photo detectors, Solar-cells.	15

- 1. **A.S. Grove**, Physics and Technology of Semiconductor Devices, WILEY, United States, 1st Edition, 1967.
- 2. **B.L. Sharma,Metal**, Semiconductor Schottky Barrier Junction and their Applications, Springer, USA, 1st Edition, 1984.
- 3. E. H.Rhoderick, Metal/Semicond uctor Contacts, Clarendon Press, UK, 1st Edition, 1988.
- 4. **Jasprit Singh**, Semiconductor Devices Basic Principles, John Wiley & Sons, United States, 1st Edition, 2000.
- 5. **S.M. Sze**, Physics of Semiconductor Devices, John Wiley & Sons, United States, 2nd Edition, 2003.

Nuclear Reactor Physics

Version :	Name of the subject: Nuclear Reactor Physics	L	Т	P	С	Semester:	Contact hours per week: 3+1		
2022-24		3	1	0	4	III (2 nd Year)	Total Hours: 60=45+15		
Cubicat	Applicable to	Engles		30	Eveni	 nation Durat	tion 2 hours		
Subject Code: SBS	Applicable to Programs: M.Sc. Physics	Evalu ation	CIE	Marks	Exami	nauon Durai	non; 5 nours		
PHY 01 302 DCEC 3104		(Total Marks : 100)	TEE	70 Marks	Prerequisite of Course: None				
Course Descrip tion	This course is intended to impart primary but wide theoretical knowledge about nuclear reactor and related topics.								
Course Objecti ves	• To know abou	it the basic	etical and exper designs of nuclear fuel	clear reactor	S.	bout nuclear re	actors.		
After completion of this course, students would be able to: CO302D.1. Understand the nuclear fission reactions. CO302D.2. Learn about neutron sources and moderators. CO302D.3. Get knowledge about working of nuclear reactors. CO302D.4. Get knowledge about different types of power reactors CO302D.5. Learn how to manage the nuclear fuel and waste.									

Unit No.	Content of Each Unit	Hours of Each Unit
1	Nuclear Reactions: Characteristics of atomic nucleus, Binding energy, Nuclear fission, Cross section, Interaction of neutrons with nuclei.	15
2	Neutron moderation: Inelastic scattering, Elastic collisions, Moderating ratio, Slowing down Density, Resonance escape, Moderators, Neutron sources, Prompt neutrons, Fast fission, Fission energy, Thermal utilization, Fission products, Chain reaction, Multiplication factor, Leakage of neutrons, Critical size, Diffusion and slowing down theory, Homogenous and heterogeneous reactors.	15
3	Nuclear Reactors: Fuel materials, Moderator materials, Cladding materials, Coolant materials and control materials, Control requirement calculations, Means of control, Reactor kinematics: Neutron lifetime, Generation time, Point kinetic equation and solution of the equations for step input reactivity.	15
4	Types of Power reactors & Fuel and waste management: Boiling water reactors, Pressurized water reactors, Pressurized heavy water reactors, Light water cooled graphite moderated reactors, Gas cooled reactors, Advanced gas cooled reactors, High temperature gas cooled reactors and liquid metal cooled reactors and Fast breeder reactors, Fuel management schemes, Fuel composition, Fuel cycle cost and wastemanagement.	15

Laboratory Assignments:

Visits to fission reactor sites and related case studies for generation of nuclear energy.

- 1. Lamarshs, J.R., Introduction to Nuclear Reactor Theory, Addison-Wesley Publishing Co., 1966.
- 2. **Glasstons**, Sammuel and Sesonske, Alexander, Nuclear reactor Engineer, CBS Publishers & Distributors, 1986.

PLASMA PHYSICS AND FUSION REACTOR

Scheme	Name of the	L	T	P	С	Semester:	Contact
Version:	subject:						hours per
	Plasma Physics and						week: 3+1
2022-24	Fusion Reactor						Total
2022-24		3	1	0	4	III (2 nd	Hours:
		3	1		-	Year)	60=45+15
Subject Code:	Applicable to	Evaluatio		30	Examir	nation Durati	ion: 3 hours
SBS PHY 01 303 DCEC 3104	Programs:	n	CIE	Marks			
303 DCEC 3104	M.Sc. Physics	(Total					
		Marks:		70 Marks	_	uisite of Cou	
		100)	TEE	Warks		natical Physic m Mechanics	s and
					Quantu	in wicehames	
Course	Students will be	exposed to the	eory relat	ed to moti	on of cha	rge particle ii	1
Description	inhomogeneous						
Course	• To r	nake student	s familia	r with for	urth state	of matter	
Objectives		ware studen		-		-	
	• To r	nake student	s familia	r with pr	oduction	of energy	in fusion
	reac						
Course	After completion	of this course	e, the stud	dents will	have unde	erstanding of	
Outcomes	CO303D.1. wha	t are theoretic	al method	d to study	the charge	e particle mot	ion
	CO303D.2 Idea	behind the m	agnetic c	onfinemen	ıt		
	CO303D.3. how				•		
	CO303D.4. how				nake fusi	on reactors	
		COURS	Ł SYLL <i>i</i>	ABUS			
Unit No.		Conte	nt of Eac	h Unit			Hours of
							Each Unit
1	Introduction:						

	Plasma state, plasma parameters, applications of plasmas.	
	Single particle orbit theory: Drift of charge particle under different	
	combinations of electric and magnetic field, crossed electric and	
	magnetic fields, homogenous electric and magnetic fields, spatially	
	and time varying electric and magnetic fields,	
	The Boltzmann Equation:	
2	Simplified magneto-hydrodynamic equations - Electron plasma oscillations Debye shielding phenomenon and criteria for plasma, motion of charged particles in electromagnetic field, Electric field drift, parallel acceleration, curvature drift, adiabatic invariants; fundamental equations of magneto-hydrodynamics(MHD), magnetic confinement.	15
	Production of Plasma in laboratory:	
3	Physics of glow discharge, electron emission, ionization breakdown of gases, Paschen's law and different regimes of E/ρ in a discharge.	15
	Plasma diagnostic: Probes, energy analysers, magnetic probes and optical diagnostics, preliminary concepts.	
	Fusion Reactor:	
4	Potential of fusion energy, controlled thermonuclear reactions, fusion reactions, fusion cross-sections, fusion power generation, energy balance for fusion systems, ignition criterion, gain factor, plasma heating, ohmic heating, neutral beam injection, radio frequency heating, inertial confinement fusion, tokamaks, stability, operating limits and transport.	15
	TEXT BOOKS	

- 1. Nicholson, D. R., Introduction to Plasma theory, Wiley, 1983
- Chen, F.F., Introduction to Plasma Physics, Springer, 1984
- Sturrock, P.A., Plasma Astrophysics, Cambridge University Press, 1994
- Choudhuri, A.R., The Physics of Fluids and Plasmas, Cambridge University Press, 1998

PHYSICS OF NANOMATERIALS

Scheme	Name of the Subject:	L	T	P	C	Semester	Contact	
Version:	Physics of Nanomaterials					:	hours per	
	•						week: 3+1	
2022-24								
2022-24		3	1	0	4	III	Total	
						(2 nd Year)	Hours: 60=45+15	
							00=45+15	
Subject	Applicable to Programs:	El4:	CIE	30		mination Du	ration: 3	
Code:	M.Sc. Physics	Evaluation (Total		Marks	hou	rs		
SBS PHY	,	Marks):		70	D		- C	
01 304		100	TEE	Marks		requisite d State Physi	of course:	
DCEC 3104				Walks	Don	a State 1 11y 51	CS	
Course	To introduce knowledge on b	basics of nano	l science ar	l nd the fun	dame	ntal concepts	behind size	
Description	reduction in various physics					•		
	understand the different prope	erties of mater	ials being	used in va	arious	length scales	S.	
Course	• The objective of the	is course is	to provi	de the k	nowle	dge on the	Physics of	
Objectives	nanostructure materia				ortant	for size con	trol and size	
	selection and applicatThe course lays foun				nginee	ering aspects	of materials	
	and their applications				-6	8		
Course	On completion of this course,	student will le	earn:					
Outcomes:	•							
	CO304.1 Correlate properties characteristics.	s of nanostruct	ures with	their size,	shape	e and surface		
	characteristics.							
	CO304.2 Qualitatively descri		_	e size can	affect	the morphol	logy, crystal	
	structure, reactivity, and mech	nanical proper	ties.					
	CO304.3 Understand the eff	fects of quant	tum confi	nement o	n the	electronic s	tructure and	
	corresponding physical and cl	nemical proper	rties of ma	terials at	nanos	cale.		
	CO304.4 Describe several sy	nthesis metho	ds for fah	rication o	f inor	ganic nanona	articles, one-	
	-							
	dimensional nanostructures (nanotubes, nanorods, nanowires), thin films, nonporous materials, and nanostructured bulk materials, and also could describe how different lithography methods							
	can be used for making nanos	tructures.						
	CO304.5 Understand some sp	pecific materia	als like gra	phene and	d carb	on nanotube	s for various	

COURSE SYLLABUS	vledge on the characterization of nanomateria	ls by
Unit No. Conten		
	t of Each Unit	Hours of Each Unit
1. Introduction to Nanostructure Mat	erials:	15
reactivity, Mechanical properties at a Melting point (quasi melting) of r	ize dependence of properties, Chemical- nanoscale, Moor's law, Surface energy and nanoparticles, Excitons, Density of states, energy and size of crystal. Population of 1D, 2D & 3D material.	
2. Quantum Size Effect:		15
quantum dots and artificial atoms. Ele	quences, quantum wells, quantum wires and ectronic structure from bulk to quantum dot. direct gap semiconductors nanocrystals. bhous systems.	
3. Synthesis of Nanomaterials:		15
Top down and Bottom up approach phase synthesis of nanopowders, cher	naterials, Different approaches of synthesis, nes, Thermal and e-beam evaporation, Gas mical and colloidal methods, sol gel method, nell Milling, Specific materials like graphene	
4. Characterization techniques:		15
(SEM), Transmission Electron Micro (SPM), Atomic Force Microscopy	Microscopy: Scanning Electron Microscopy oscopy (TEM), Scanning Probe Microscopy (AFM), Raman Spectroscopy and XPS, Vis-NIR spectroscopy, Thermogravimetric	
REFERE	NCE BOOKS	

- 1. D. Bimberg, M. Grundmann, N.N. Ledenstov, Quantum Dot Hetrostructures, John Wiley & Sons, United States, 1st Edition, 1999.
- 2. Charles P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology, John Wiley & Sons, United States, 1st Edition, 2003.
- 3. Guozhong Cao, Nanostructures & Nanomaterials, Synthesis, Properties & Applications, Imperial College Press, UK, 1st Edition, 2004
- 4. Liming Dai, Carbon Nanotechnology, Elsevier, Netherland, 1st Edition, 2006.
- 5. Michael J. O'Connell, Carbon Nanotubes: Properties and Applications, CRC Press, USA, 1st Edition, 2006.
- 6. T. Pradeep, Nano: The Essentials, McGraw Hill Companies, New York, 1st Edition, 2007.
- 7. Hornyak G.L., Tibbals H.F., Dutta J., Moore J.J., Introduction to Nanoscience and Nanotechnology, CRC Press, USA, 1st Edition, 2008.

General Theory of Relativity

Scheme Version:	Name of the subject:	L	T	P	С	Semester:	Contact Hours		
V CI SIGII.	General						per		
2022-24	Theory of					III(^{2nd}	Week: 4		
	Relativity					Year)	Total		
		3	1	0	4		Hours:		
	4 7 77	.		20	T.	· D	60=45+15		
Subject Code: SBS	Applicable to Programs:	Evalu ation	CIE	30 Marks	Hours	ination Dura	uon: 3		
PHY 01 305	M.Sc. Physics	(Total	CIE	70		equisite: Cla	ssical		
DCEC 3104	Wi.be. Thysics	Mark	TEE	Marks		rodynamics,	ssicai		
		s:			Mathematical Methods in				
		100)			Physic	Physics I & II			
Course	Aim of the cour	se is to f	amiliarize s	tudents w	ith diffe	erent aspects	of theory of		
Description	gravitation.								
Course	The student will come to understand								
Objectives	. Special Theory of Relativity								
Objectives	. General Theory of Relativity								
	. Few applications of Geeral Theory of Relativity.								
	On completion of the course, student would be able to								
Course	CO305D.1: understand the mathematical rigour that goes behind the theory of								
Outcomes	relativity and also be able to								
	CO305D.2: Understand few applications of general theory of relativity.								
	CO305D.3: Understand the Special theory of relativity CO305D.4: Understand the origin of gravitational waves								
	CO303D.4. CIRC		RSE SYLL		iiai wav	CS			
Unit No.			nt of Each			Hou	rs of Each		
							Unit		
	Historical Background:								
1	Review of Newto		1.5						
1	relativity. Prelud			£'			15		
	developments, 4-Vectors and 4-tensors, examples from Physics								
	Tensors in GTR	:							
	Principle of Equivalence, Equations of motion, Gravitational								
2	force, Tensor An		•				15		
	Gravitation, Rier		ristoffel curv	vature tens	or, Ricc	ci			
	Tensor, Curvature Scalar								
3	Applications of		г .	. 1		1	15		
	Einstein Field Equations, Experimental tests of General								

	Theory of Relativity, Scwartzchild Solution, Gravitational			
	Lensing			
	Gravitational Radiation:			
4	Gravitational waves: generation and detection, Energy,	15		
	momentum and angular momentum in Gravitation			
Tayt Rooks				

- 1. **S. Weinberg,** Cosmology, Oxford University, 1 st Edition, 2008.
- 2. Ray D'Inverno, Introducing Einstein's General Relativity, Oxford University, 1 st Edition, 1992.
- 3. M. Berry, Principle of Cosmology and Gravitation, Taylor & Francis; 1 st Edition, 1989.
- 4. **Tai L. Chow**, Introduction to General theory of Relativity and Cosmology, Springer, 1 st Edition, 2008.
- 5. **P.A.M. Dirac**, General theory of Relativity, Wiley-Blackwell, 1 st Edition, 1975.
- 6. L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Publishere, Shroff, 2 nd Edition, 2010

Astrophysics of Stars

Scheme Version:	Name of the subject:	L	T	P	C	Semester:	Contact Hours	
V CI SIOII.	Astrophysics						per	
2022-24	of Stars					III(^{2nd}	Week: 4	
		3	1	0	4	Year)	Total Hours: 60=45+15	
Subject Code: SBS	Applicable to Programs:	Evalu ation	CIE	30 Marks	Examination Duration: 3 Hours			
PHY 01 306	M.Sc. Physics	(Total		70	Prer	Prerequisite: Introduction		
DCEC 3104		Mark	TEE	Marks		to Astronomy and		
		s: 100)			Astrophysics			
Course	Aim of the Cours				_		=	
Description	injecting vast amounts of energy and momentum into their surround-ings, they act as drivers for the evolution of their host galaxies							
Course	Aim of this course is to understand in detail what goes on deep inside an							
Objectives	object that, to us, is a mere pinprick of light in the sky.							
Course Outcomes	On completion of the course, student would be able to CO306D.1: quantify the basic parameters of stars. CO306D.2: understand how radiation interacts with matter at the surfaces of stars CO306D.3: Understand how to produce the spectra that we observe							
	CO306D.4 : kno		-	-			ucture,	
	composition and evolution of stars.							
Unit No.			RSE SYLL			II	ırs of Each	
Unit No.	Content of Each Unit					пос	Unit	
1	Stellar Observations: Introduction, Distance & magnitude, Blackbody radiation, Colors & line spectra, Binary systems: visual binaries, Eclipsing & spectroscopic binaries, The Hertzsprung-Russel diagram, Spectral classification						15	
2	Stellar Atmospheres: Stellar atmospheres, Describing radiation, Radiation &matter, Radiative transfer, The Eddington approximation, The grey atmosphere, Realistic model atmospheres, Opacity sources, Spectral features, Profile shapes, Line strengths					e grey	15	

	Stellar Interiors :	
3	Mechanical structure, The virial theorem, Polytropes, Equation of state, Energy conservation; diffusive transport, Mass-luminosity relation; main sequences, Convective transport, Energy generation, Nuclear fusion networks, Fusion rates, Rotation, Stellar model building	15
4	Stellar Evolution: The main sequence, The Sun, Massive stars, Star formation, Pre-main-sequence evolution, Evolution off the main sequence, Helium burning & beyond, Stellar death, Stellar pulsation, White dwarfs, Neutron stars	15
	Text Books	

1. "An Introduction to Modern Stellar Astrophysics",

Bradley W Carroll and Dale A Ostlie (ISBN: 978-08053034830), Cambridge University Press (2017)

- 2. "Stellar Structure and Evolution", R. Kippenhahn & A. Weiger, (2012) Springer-Verlag Berlin Heidelberg
- 3. Structure and Evolution of the Stars, by M. Schwarzschild. (ISBN: 9780691652832), 2016, Princton University Press
- 4. Stellar Atmospheres, by Ivan Hubeny, Springer Verlag
- 5. Radiative Processes in Astrophysics : G. Rybiki and A. Lightmann, 2004 WILEY-VCH Verlag GmbH & Co.

Characterization Techniques for Materials

Scheme	Name of the	L	T	P	С	Semester:	Contact
Version:	subject:						hours per
2022-24	Characterization Techniques for						week: 3+1
	Materials	3	1	0	4	I (1 st Year)	Hours: 60= 45+15
Subject Code:	Applicable to	Evalu		30	Exami	nation Durat	t ion: 3 hours
SBS PHY 01	Programs:	ation		Marks			
307 DCEC	M.Sc. Physics		CIE				
3104		(Total		70	Droroc	unicita of Con	urgo: Nono
		Marks : 100)	TEE	Marks	Prerequisite of Course: None		
Course	This course cover	s the fun	l damental prii	nciples and	practic	al application	s of different
Description			_	_	_		
_	classes of materials and characterization techniques. The course discusses characterization techniques used for chemical and structural analysis of materials,						
	including metals, ceramics, polymers, composites, and semiconductors. The topics						
	include important spectroscopic, microscopic and thermal methods for materials characterization.						
Course	To introdu	ce the ma	terials charac	terization to	echnique	s to the stude	nts
Objective	 To introduce the materials characterization techniques to the students Help the students to understand the instrumentation aspects 						
	To provide a detailed understanding of data interpretation						
	To provide hands on experience of the characterization techniques						
Course	On completion of t	the course	, student wou	ld be able:			
Outcomes	CO307D.1. To determine crystal structure of specimen and estimate its crystallite size and stress						
	CO307D.2. To choose an appropriate microscopy techniques to investigate microstructure of materials at high resolution						
	CO307D.3. To use appropriate spectroscopic technique to measure vibrational/electronic transitions to estimate parameters like energy band gap, elemental concentration, etc.						
	CO307D.4. To	apply th	ermal analysi	is technique	es to det	ermine therm	al stability of

	and thermodynamic transitions of the specimen.	
	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	Structure analysis X-ray diffraction. Diffraction under non-ideal conditions. Atomic scattering and Geometrical structure factors. Factors influencing the intensities of diffracted beams. Phase identification, indexing and lattice parameter determination, Powder X-ray diffractometer. Applications of XRD in bulk and nano-materials.	15
2	Microscopy techniques Introduction to Microscopes, Optical microscopy, Transmission Electron Microscopy (TEM); Basic Electron scattering, Concepts of resolution, TEM instruments, Various imaging modes, Analysis of micrographs, Electron Energy Loss Spectroscopy, Scanning Electron Microscopy (SEM), Scanning Probe Microscopy (AFM and STM)	15
3	Spectrophotometric analysis of materials UV-VIS spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X- ray photoelectron Spectroscopy (XPS).	15
4	Thermal analysis techniques Differential thermal analysis (DTA), Differential Scanning Calorimetry (DSC), Thermo-gravimetric analysis (TGA), Electrical characterization techniques: Electrical resistivity in bulk and thin films, Hall effect, Magnetoresistance TEXT BOOKS	15

- 1. Wendlandt, W.W., Thermal Analysis, John Wiley & Sons, 1986.
- 2. Wachtman, J.B., Kalman, Z.H., Characterization of Materials, Butterworth Heinemann, 1993.
- 3. Murphy, Douglas B, Fundamentals of Light Microscopy and Electronic Imaging,

Wiley-Liss, Inc. USA, 2000.

- **4.** Cullity, B.D., and Stock, R.S., "Elements of X-Ray Diffraction", Prentice-Hall, 2001.
- **5. B. Raj**, **T. Jayakumar**, **M. Thavasimuthu**, Practical Non-Destructive Testing, 2nd ed., Narosa Publishing House, 2002.
- **6. D. A. Skoog**, **F.J. Holler**, **S. R. Crouch**, Instrumental Analysis, Cengage Learning, 2007.
- 7. Li Lin, Ashok Kumar, Materials Characterization Techniques Sam Zhang; CRC Press, 2008.
- **8. Y. Leng**, Materials Characterisation: Introduction to Microscopic and Spectroscopic Methods, John Wiley & Sons (Asia), 2008.
- **9. J. C. Vickerman**, **I. Gilmore**, Surface Analysis: The Principal Techniques, 2 nd ed., John Wiley & Sons, Inc.2009.

Digital Electronics and Microprocessor

Scheme Version	Name of the subject: Digital Electronics and Microprocessor	L	Т	P	С	Semester:	Contact hours per week: 3+1		
2022-24	Wilcroprocessor	3	0	2	4	III (2 nd Year)	Total Hours: 60=45+15		
Subject Code:	Applicable to Programs: M.Sc.	Evalu ation	CIE	30 Marks	Exami	nation Durat	tion:3 hours		
SBS PHY 01 308 DCEC 3024	Physics	(Total Marks : 100)	TEE	70 Marks	of Sem	quisite of Couniconductor D	•		
Course Descrip tion	Descrip application of microprocessor.								
Course Objecti ves	 To understand To make fami To understand 	iliar with va	arious logic fa	amilies and t	heir imple	mentation in lo	gic circuits.		
Course Outcom es	After completion of this CO308D.1. The basics of CO308D.2. Digital arith CO308D.3. Various mer CO308D.4. Microproces	of digital sy metic oper mory device	ystems and I rations and c ces & their a	Boolean algombination pplications	ebra. ıal & seq		S.		
	COURSE SYLLABUS								
Unit No.		Cor	ntent of Eac	h Unit			Hours of Each		

		Unit
1	Digital Systems: Digital signals, binary number system, conversions, Boolean algebra, logic gates, standard gate assemblies, implementing circuits from boolean expressions, SOP, POS, Simplifying logic circuits: algebraic method, K-mapping, Error detection: Parity method, checksum method.	15
2	Digital Circuits: Combinational Circuits: Half Adder, Full Adder, Decoder, Encoder, Multiplexer, Demultiplexer and their applications. Sequential Circuits: Flip flops; SR, T, D and J-K, Shift Register, Parallel and Serial data transfer, Timming Waveforms. Counters: Synchronous and Asynchronous Up, Down, and Bidirectional Counters, Timing Wave forms. Digital to Analog Converters and their properties, weighted resistor and R-2R Ladder type, Analog to digital Converters: Flash, Successive approximation, Sigma- Delta ADC.	15
3	Applications: Memory: Read Only Memory (ROM): PROM, EPROM, EEPROM, Applications, Programming a ROM, Random Access Memory(RAM): SRAM, DRAM, Applications, Memory Storage cell, Read and Write operations, Programmable Logic Devices (PLD) Digital Display, Seven segment display.	15
4	8085 Microprocessor: Basics of Microprocessor-8085, PIN description, Microprocessor initiated operations. Internal data operations. Introduction to 8085 assembly language programming. 8085 instruction, Microprocessor Applications, Recent trends in Microprocessor Technology.	15

Laboratory Assignments:

To construct logic gates OR, AND, NOT, NOR, NAND gates using discrete components and verify their truth tables

To construct logic gates AND, NOT, EX-NOR and EX-OR using NAND gates and verify their truth tables. To perform 4 bit DAC and ADC operations

To arrange a data set in ascending order using 8080 microprocessor.

Use the IC555 chip as a stable, bistable and monostable multivibrator.

To study various operations of Arithmetic logic Unit (ALU).

To perform the addition and subtraction of n 8 bit numbers using 8085 microprocessor

To perform the multiplication and division of two 8 bit number using 8085 microprocessor

To write a program to arrange an array of data in ascending order using 8085 microprocessor

To design and construct multiplexer and demultiplexer and verify their truth tables.

To study the encoders and decoders

To perform BCD to Binary operation using 8085 microprocessor.

- 1. **Malvino A.P**. and **Brown A**., Digital Computer Electronics, Prentice-Hall, India, New Delhi, 3rd Edition, 1999.
- 2. **Gaonkar R. S**., Microprocessor Architecture, Programming and Applications, Prentice-Hall, India,New Delhi, 2nd Edition, 2014.
- 3. **Tocci R. J.**, Digital Systems-Principles and Applications, Prentice Hall of India, New Delhi, 8th Edition, 2015.

Programming with Python

Scheme Version:	Name of the subject:		L	Т	P	С	Semester:	Contact hours per week: 3+1
	Programming							week: 5+1
2022-24	with Python		3	0	2	4	III (2 nd Year)	Total Hours: 60=45+15
Subject Code:	Applicable to		Evalu		30	Exami	 ination Durat	ion: 3 hours
SBS PHY 01 309 DCEC	Programs:		ation	CIE	Marks			
3024	M.Sc. Physics		(Total		70	Prerec	quisite of Cou	rse: Basic
			Marks : 100)	TEE	Marks		edge of compu	
Course Description				e on Comput techniques b			to familiarize	e the students
Course		To tra	in student	in scientific	language P	ython		
Objectives				ts comfortablical methods		_	•	
Course Outcomes	CO309E language CO309E along wi CO309E	0.1. Learn b. 2. Under the graphic 0.3. Design	the basics estand the cal user into a algorithm	basics of inpaterface	ming using ut and outp us numerica	Python out forma	as a scientific	
	<u> </u>		(COURSE SY	LLABUS			
Unit No.				Content of F	Each Unit			Hours of Each Unit

	Basic of Python:	
1	Computational modeling, python programming for a Physicist, structure of a python program, running python program in console and in editor. constant and variables, numbers-integers, long integer, floating point number, complex number, sequences-string, list, tuples, dictionaries, operators — arithmetic operators, relational operators.	15
	Logical Statements:	
2	logical operators, assignment operators, conditional operator. Control statements if, if else, if-elif-else, while, for loop, nested if and nested for loops, break and continue.	15
	Functions in Python:	
3	user made, library, inbuilt. Functions definition and declaration, passing arguments, return values, default values and optional parameters. Importing modules, File handling operation with files, opening and closing a file. Formatting inputs and outputs, visualizing data, 2D, 3D, scatter graphs, animating graphs, statistical analysis of data- mean, median, mode, variance.	15
	Selected Problem using Python:	
4	Optimization: designing an algorithm for accuracy, designing an algorithm for speed, Errors in computation and Numerical stability, numerical integration, differentiation. Curve fitting, least squares method principle, Fourier Transform, symbolic computation, numerical computation.	15
	TEXT BOOKS	
2.	 Patil P. B. &Verma U. P., Numerical Computational Methods, Revised (Reprint 2013), Narosa Publication. Fangohr H., Introduction to Python for Computational Science and Eng (A beginner's guide), (2015), Faculty of Engineering and the Envir University of Southampton. Rajaraman V., Computer Oriented Numerical methods, 3rd Edition (2015), Hall India Ltd. 	gineering ronment,

Major Research Project

Scheme Version:	Name of the subject: Major Research Project	L	Т	P	С	Semester:	Contact Hours per Week: Total Hours:		
		0	0		16	Year)			
Subject Code:	Applicable to	Evalu		120	Exam	ination Durati	on:3 hours		
SBS PHY 01 401 DCEC	Programs:	ation	CIE						
00016	M.Sc. Physics	(Total		280	Prere	quisite of Cour	se: None		
		Marks : 400)	TEE	Marks					
Course	The dissertation to	ppics will be ba	sed on spec	cial papers	or elec	tive papers a	nd topics of		
Description	and merit of the st	current interest. A departmental committee will distribute the topics according to the skill and merit of the students.							
Course		e students familia				urvey			
Objectives		e student capable	•	· ·		1			
	• Students	s will learn basic	techniques i	or carrying	out resea	arcn			
	After completion of	this project, stude	ents will be a	ble to learn	about:				
Course Outcomes	CO401.1. Basic of	literature review							
Outcomes	CO401.2. Technique		ming researc	h					
	CO401.3. Analyze t	he results and tab	ulate them in	a proper m	anner				
	CO401.4. How to v	rite and dissertati	on, making j	presentation	n and viv	a etc.			

Evaluation: The evaluation will be done by an external examiner. External examiner will award the grades based on quality of research work done recorded in dissertation and presentation made by student.

ADVANCED NULEAR PHYSICS

Scheme Version:	Name of the	L	T	P	C	Semester:	Contact Hours per				
version:	subject: Advanced						Week: 3+1				
2022-24	Nuclear					IV (2 nd	Total				
	Physics	3	1	0	4	Year)	Hours:				
						,	60=45+15				
Subject Code:	Applicable to	Evaluatio	CIT	30	Exami	nation Durat					
SBS PHY 01 401 DCEC 3104	Programs:	n (Total	CIE	Marks 70	D	-:-:4£ C					
401 DCEC 3104	M.Sc. Physics	(Total Marks: 100)	TEE	Marks	_		es and Nuclear				
Course Description	To impart know understanding o heavy ion physic	f related reac	tion dyna	mics. Bes	s, proper side this	ties and nucl students will	ear models for be exposed to				
	• Stud	dents will un	derstand	about the	e stabilit	y of nuclei a	way from the				
	drip	line and def	ormed n	uclei							
Course	• Stud	dents will kno	ow the di	fferent th	eoretical	approaches	to explain the				
Objectives	stru	cture of nucl	ei								
	• Stud	dent will und	erstand	the basics	of heav	y ion nuclea	r physics and				
	its c	orrelation to	Astroph	ysics							
	After competitio										
Course	CO401D.1. Kno										
Outcomes	CO401D.2. Und										
	CO401D.3. Und CO401D.4. Und										
	CO401D.4. Ond	COURS			and relate	а аррисации	15.				
Unit No.			nt of Eac				Hours of				
CIII TO		Conte	nt of Lat	cii Ciiit			Each Unit				
	Nuclear deform	ations:									
	Effect of quadru	pole deformat	ions and	higher mu	ltipole de	formations,					
1	Nuclear moments, Nuclear orientation effect, static and dynamic										
1	deformations, deformed magic shells and related nuclear aspects,										
	•		•	halo shape	hapes and bubble effect,						
	parametrization										
	Collective Mode			1 Potation	of defor	med nuclei					
	Collective motion, deformed shell model, Rotation of deformed nuclei, Rotational band, Yrast level and back bending, Collective model										
2	Hamiltonian, nuclear wave function for even-even nuclei and odd-A										
nuclei, Rotation-vibrational coupling, Nilsson model, crankin											
	model, vibration					•					
	Heavy Ion Nuc					•					
	nuclei and dire		•								
3	dynamics, Radio				Molecules, Nuclear 15						
	Dynamics at In		_	_	-	•					
	Models, Statistical Models, Multi-fragmentation, Elliptical Flow,										

	Transverse Flow, Experimental Scenario, Relativistic heavy ion	
	collisions.	
	Nuclear Astrophysics:	
4	Hot big bang cosmology, Primordial nucleosynthesis, Stellar nucleosynthesis, energy production in stars, pp chain, CNO cycle, production of elements, Origin of chemical elements, Neutron Star, Chandershekhar limit, supernova, Nuclear Applications: Recent trends in nuclear structure physics and	15
	related important applications	

- 1. Pal, M.K., Theory of Nuclear Structure, East-West Press Delhi, 1983.
- 2. Preston M. A. and Bhaduri R. K., Structure of Nucleus Addison-Wesley, 2000.
- 3. Roy R. R. and Nigam B. P. 9th Edition, Nuclear Physics, New Age International (p) Ltd, Delhi, 2001
- 4. Lilley J.S., Nuclear physics principles and applications John Wiley & sons Ltd., 2007.
- 5. Krane K.S. Nuclear Physics, Wiley India Pvt. Ltd., 2008.

PARTICLE PHYSICS

Scheme Version:	Name of the subject: Particle Physics	L	T	P	С	Semester:	Contact hours per week: 3+1	
2022-24	j	3	1	0	4	IV (2 nd Year)	Total Hours: 60=45+15	
Subject Code: SBS PHY 01 402 DCEC 3104	Applicable to Programs: M.Sc. Physics	Evaluatio n (Total	CIE	30 Marks	Examir	nation Durati	ion: 3 hours	
	Ni.se. Thysics	Marks: 100)	TEE	70 Marks	Mathem	uisite of Coun natical Physic m Mechanics	s and	
Course Description	To impart the knowledge of fundamental particles, fundamental interaction and the range and strength of these interactions with the concept of particle antiparticle or matter antimatter.							
Course Objectives	 Students will understand the different type of particles and interactions among them Students will be able to understand the conservation laws in particle physics Students will get to know the production cross section for particles Students will understand the quark model. 							
Course Outcomes	After completion of this course, the students will be able to CO402D.1. Need of standard model and its limitations and the properties of QCD. CO402D 2. Basic rules of Feynman diagrams and the quark model for hadrons							
Unit No.		Conte	nt of Eac	h Unit			Hours of	

		Each Unit
1	Introduction: Fermions and bosons, Particles and antiparticles, Quarks and leptons, Interactions and fields in particle physics, Classical and quantum pictures, Yukawa picture, Types of interactions - electromagnetic, weak, strong and gravitational, units.	15
2	Invariance Principles and Conservation Laws: Invariance in classical mechanics and in quantum mechanics, Parity, Pion parity, Charge conjugation, Positronium decay, Time reversal invariance, CPT theorem.	15
3	Hadron-Hadron Interactions: Cross section and decay rates, Pion spin, Isospin, Two-nucleon system, Pion-nucleon system, Strangeness and Isospin, G-parity, Total and Elastic cross section, Particle production at high energy.	15
4	Static Quark model of Hadrons: The Eightfold way, Meson nonet, Baryon octet, Baryon Decuplet, hypothesis of quarks, SU (3) symmetry, Quark spin and color, Quark-antiquark combinations. Weak Interactions: Classification of weak interactions, Fermi theory, Weinberg-Salam model, Parity non-conservation in β-decay, Helicity of neutrino, Experimental verification of parity violation, K-decay.	15

- 1. Perkins, D.H., Introduction to High Energy Physics, Cambridge University Press, 2000, 3rded.
- 2. Hughes, I.S., Elementary Particles, Cambridge University Press, 1991.
- 3. Close, F.E., Introduction to Quarks and Partons, Academic Press, 1979.
- 4. Segre, E., Nuclei and Particles, Benjamin-Cummings, 1977.
- 5. Khanna, M.P., Introduction to Particle Physics, Prentice-Hall of India, 2004.

Cosmology

Scheme Version:	Name of the subject: Cosmology	L	Т	P	С	Semester	Hours per	
2022-24						IV(^{2nd} Year)	Week: 4	
		3	1	0	4		Total Hours: 60=45+15	
Subject Code: SBS	Applicable to Programs:	Evalu ation	CIE	30 Marks	Exami	nation Dura	ation: 3 Hours	
PHY 01 403	M.Sc. Physics	(Total		70		quisite: Int		
DCEC 3104		Mark	TEE	Marks		onomy and		
		s: 100)			Astrop	ohysics		
Course	Cosmology is a	branch o	of astronomy	that inv	olves th	e origin and	l evolution of	
Description	the universe, from	n the Big	Bang to too	lay and o	n into th	e future.		
Course Objectives	The aim of this course is to introduce the model of the universe on large scales							
Course Outcomes	CO403D.1 : Und CO403D.2 : App CO403D.3 : Und	On completion of the course, student would be able to CO403D.1: Understand the concepts of STR and GTR CO403D.2: Apply the concepts of GTR to cosmology CO403D.3: Understand the model of expanding universe CO403D.4: Explain the model of early universe and its thermal history.						
			RSE SYLL			,		
Unit No.		Conte	nt of Each	Unit		He	ours of Each Unit	
1	Principles of Relativity: Overview of Special Relativity - spacetime interval and Lorentz metric- four vectors - Introduction to general relativity (GR) - equivalence principle - notions of curvature						15	
2	Gravitation as spacetime: gravitational reds gravity, light ber	Gravitation as a manifestation of the curvature of spacetime: gravitational redshift and clock corrections - orbits in strong gravity, light bending and gravitational lensing - concept of horizon and ergosphere, hydrostatic equilibrium in GR -						
3	Cosmological M Universe at larg distance ladder redshift - Cosmo	lodels: ge scales –Newton	nian cosmo	logy - 6	expansio		15	

	Robertson-Walker metric - Observable quantities – luminosity and angular diameter distances - Horizon distance-Dynamics of Friedman- Robertson-Walker models: Friedmann equations for sources with p=wu and w =-1, 0, 1/3, discussion of closed, open and flat Universes.	
4	Physical Cosmology and Early Universe: Thermal History of the Universe - distribution functions in the early Universe - relativistic and nonrelativistic limits - Decoupling of neutrinos and the relic neutrino background - Nucleosynthesis - Decoupling of matter and radiation - Cosmic microwave background radiation (CMB)- Anisotropies in CMB - Inflation - Origin and growth of Density Perturbations - Formation of galaxies and large scale structures - Accelerating universe and type-Ia supernovae - The Intergalactic medium and reionization.	15
	Text Books	

- 1. Cosmological Physics, Cambridge University Press, J. A. Peacock
- 2. An Introduction to Relativity, J. V. Narlikar, Cambridge University Press, 2010
- 3. Theoretical Astrophysics, Volume III: Galaxies and Cosmology,
- T. Padmanabhan, Cambridge University Press, 2002 (for lectures on Cosmology)
- 4. Classical Theory of Fields, Vol. 2, L. D. Landau and E. M. Lifshitz, Oxford: Pergamon Press, 1994 (For more material on General Relativity).
- 5. Introduction to Cosmology, J. V. Narlikar, Cambridge University Press, 1993 (For the lectures on Cosmology).
- 6. First course in general relativity, B. F. Schutz, Cambridge university press, 1985 (For material on General Relativity).
- 7. Structure Formation in the Universe. T. Padmanabhan, Cambridge University Press, 1995 (for material on Cosmology and Structure formation).

FERROELECTRICITY AND MAGNETISM

Subject Code: SBS PHY 01 40 DCEC 3104 Applicable to Programs:	Scheme Version:	Name of the subject: Ferroelectricity and	L	T	P	С	Semester:	Contact hours per week: 3+1		
SBS PHY 01 404 DCEC 3104 Programs: (Total Marks: 100) TEE Marks TEE TEE To understand the fundamentals of dielectric, ferroelectric and magnetism phenomenon in solids To make acquainted with several types of electric and magnetic materials To aware the students about industrial applications of ferroelectric and magneticals To develop the positive and scientific attitudes and analytical thinking students related to materials science After competitions of this course, the students will be able to Course Course Course Course Course After competitions of this course, the students will be able to Course Course Course Course Course Course Course After competitions of this course, the students will be able to	2022-24	Magnetism	3	1	0	4	,	Total Hours: 60=45+15		
SBS PHY 01 404 DCEC 3104 Programs: (Total Marks: 100) TEE Marks TEE TEE TOUTSE Objectives To aware the students about industrial applications of ferroelectric and magneticals To develop the positive and scientific attitudes and analytical thinking is students related to materials science Course After competitions in actuals of this course, the students will be able to Course Course After competitions in the dielectric phenomenon in crystals with their exciting	Cubicat Cada	Amuliaahla ta	E-valuatio		20	Ewawi	ation Dunati	2 h a		
M.Sc. Physics (Total Marks: 100) TEE	SBS PHY 01			CIE		Examil	iauon Durau	ion: 3 nours		
Description magnetic materials, which possess several breakthrough applications in actuse sensors, energy storage devices, data storage devices etc. • To understand the fundamentals of dielectric, ferroelectric and magnetism phenomenon in solids • To make acquainted with several types of electric and magnetic material their exciting properties • To aware the students about industrial applications of ferroelectric and magneticals • To develop the positive and scientific attitudes and analytical thinking is students related to materials science After competitions of this course, the students will be able to Course CO404D.1. explain the dielectric phenomenon in crystals with their exciting	404 DCEC 3104	M.Sc. Physics	Marks:	TEE		Gradua	tion Level Sol			
Course Objectives To make acquainted with several types of electric and magnetic material their exciting properties To aware the students about industrial applications of ferroelectric and magnetic materials To develop the positive and scientific attitudes and analytical thinking is students related to materials science After competitions of this course, the students will be able to Course CO404D.1. explain the dielectric phenomenon in crystals with their exciting		magnetic materi	This course is designed to convey the understanding about dielectric, ferroelectric, and magnetic materials, which possess several breakthrough applications in actuators, sensors, energy storage devices, data storage devices etc.							
Course CO404D.1. explain the dielectric phenomenon in crystals with their exciting		• To r their • To a mate	 To make acquainted with several types of electric and magnetic materials and their exciting properties To aware the students about industrial applications of ferroelectric and magnetic materials To develop the positive and scientific attitudes and analytical thinking in the 							
CO404D.2. interpret the theory of polarization and components of polarizability polar Dielectrics	Course Outcomes	CO404D.1. exp properties CO404D.2. inte	lain the diele	ctric phe	nomenon	in crysta	ls with their	C		

CO404D.3. learn the basics of ferroelectric and piezoelectric crystals

CO404D.4. understand the applications of ferroelectric and piezoelectric materials in various electronic devices

CO404D.5. describe the diamagnetism and paramagnetism phenomenon in solids, specifically the magnetic susceptibility behavior with temperature

CO404D.6. evaluate the paramagnetic susceptibility of iron group ions, rare earth ions, and conduction electrons

CO404D.7. compare the general mechanism of ferro, ferri, and anti-ferro magnetic materials

CO404D.8. recognize some new ferromagnetic materials which possess intriguing applications in data storage devices

COURSE SYLLABUS

Unit No.	Content of Each Unit	Hours of Each Unit
1	Theory of Dielectrics: Introduction, The Microscopic Concept of Polarization, Langevin's Theory of Polarization in Polar Dielectrics, Internal-Field or Local Field, Clausius-Mossotti Relation, Components of Polarizability: Electronic Polarizability; Ionic Polarizability; Orientational Polarizability; Total Polarizability, Measurement of Dielectric Constant, Dielectric Losses, Optical Phenomena.	15
2	Ferroelectric Crystals: Representative Crystal Types of Ferroelectrics: Properties of Rochelle Salt and Barium Titanate, Ferroelectric Displacive Transitions, Landau Theory of Phase Transition: Second-Order Transitions; First-Order Transitions, Antiferroelectricity, Ferroelectric Domains, Piezoelectricity, Electrostriction, Applications of Ferroelectric Crystals.	15
3	Diamagnetism and Paramagnetism :	15
	Langevin's Theory of Diamagnetism, Quantum Theory of	

Ferromagnetism and Antiferromagnetism: Ferromagnetic Order: Weiss Theory of Ferromagnetism; The Exchange Interaction; The Heisenberg Model, Ferrimagnetic Order: Curie Temperature and Susceptibility of Ferrimagnets, Antiferromagnetic Order, Ferroelectric Domains: Anisotropy Energy; The Bloch Wall; Origin of Domains; Coercivity and Hysteresis, Spin Waves: Magnons in Ferromagnets; The Bloch T ^{3/2} Law, Determination of Magnetically Ordered Structures, Some New Magnetic Materials: GMR-CMR Effects.		Diamagnetism: Mononuclear Systems, Langevin's Theory of Paramagnetism, Quantum Theory of Paramagnetism: Rare Earth Ions; Hund Rule; Iron Group Ions; Crystal Field Splitting, Van Vleck Paramagnetism, Nuclear Paramagnetism, Cooling by Adiabatic Demagnetization, Paramagnetic Susceptibility of Conduction Electrons.	
	4	Ferromagnetic Order: Weiss Theory of Ferromagnetism; The Exchange Interaction; The Heisenberg Model, Ferrimagnetic Order: Curie Temperature and Susceptibility of Ferrimagnets, Antiferromagnetic Order, Ferroelectric Domains: Anisotropy Energy; The Bloch Wall; Origin of Domains; Coercivity and Hysteresis, Spin Waves: Magnons in Ferromagnets; The Bloch T ^{3/2} Law, Determination of Magnetically Ordered Structures, Some New Magnetic Materials:	15

- 1. **S. Blundell**, Magnetism in Condensed Matter, Oxford, UK, 1st Edition, 2001.
- 2. **M.E. Lines and A. M. Glass**, Principles and Applications of Ferroelectrics and Related Materials, Oxford University Press, UK, 2001.
- 3. **M. A. Omar**, Elementary Solid State Physics, Pearson, India, 1st Edition, 2002.
- 4. **B. D. Culity and C. D. Grahim**, Introduction to Magnetic Materials, Wiley, USA, 2nd Edition, 2008.
- 5. **K. Uchino**, Ferroelectric Devices, CRC Press publication, Taylor and Francis Group, 2nd Edition, 2010.
- 6. **C. Kittel**, Introduction to Solid State Physics, John Wiley and Sons, USA, 8th Edition, 2012.
- 7. **M. P. Marder**, Condensed Matter Physics, Wiley, USA, 2nd Edition, 2015.

Advanced Carbon Materials

Scheme Version:	Name of the subject: Advanced Carbon Material	L	T	P	С	Semester:	Contact hours per week: 3+1		
2022-24	Carbon Material	3	1	0	4	I (1st Year)	Total Hours: 60=45+15		
Subject Co SBS PHY (405 DCEC 3104	Programs:	Evalu ation (Total	CIE	30 Marks	Exami	Examination Duration: 3 hours			
3104		Marks : 100) TEE 70 Prerequiation of the second sec					urse: None		
Course Descripti	graphene, fuller revolution and a 20th century cor	This course aims to introduce students to the advanced carbon material that includes graphene, fullerenes, hierarchical carbon, and CNTs are referred to as strength of revolution and advancement in the era of material science and technology. In general, 20th century corresponds to plastic meanwhile 21st century will be named as "Century of Graphene" owing to its exceptional physical properties.							
Course Objectiv	ve	On completion of the course, student would be able: • To understand various properties of Graphene, CNTs and Fullerenes							
Course Outcom	CO405D.1. To u	ınderstand t	he basic prop	erties of ca	rbon				
	CO405D.3.To u		•	•	11	0 1			
	CO405D.4. To u			•	l applicat	ions of fuller	renes		
			JRSE SYLL	ABUS					
Unit No.		Content o	f Each Unit			Hours	of Each Unit		
1	INTRODUCTION:						15		

Carbon atomic structure and hybridization, carbon on the Earth and

	GRAPHENE:)
2	Structure of graphene; Preparation of graphene – synthesis of graphene by various physical and chemical methods and Purification; Electronic Properties – Band Structure of Graphene - Mobility and Density of Carriers - Quantum Hall Effect – Characterization of graphene: Raman Spectroscopy, Infrared Spectroscopy, Absorption and Photoluminescence Spectroscopy, Atomic Force Microscopy, Application of graphene	15
3	CARBON NANOTUBES: The Structure of Carbon Nanotubes- Nomenclature, Structure of Single-Walled Carbon Nanotubes and Structure of Multiwalled Carbon Nanotubes; Synthesis of CNT by various physical and chemical methods and Purification, Characterization of Carbon Nanotubes: Raman and Infrared Spectroscopy of CarbonNanotubes, Absorption and Emission Spectroscopy of Carbon Nanotubes, ESR-Spectroscopic Properties of Carbon Nanotubes. Application of CNTs	15
4	FULLERENES: Structure and Bonding- Nomenclature, The Structure of C60, Structure of Higher Fullerenes - Growth Mechanisms; Production and Purification- Fullerene Preparation by Pyrolysis of Hydrocarbons, Partial Combustion of Hydrocarbons, Arc Discharge Methods, Production by Resistive Heating, Rational Syntheses; Physical Properties-, Spectroscopic Properties, Thermodynamic Properties; Chemical Properties- Hydrogenation and Halogenation, Nucleophilic Addition to Fullerenes. Application of Fullerenes	15

- 1. M.S. Dresselhaus, G. Dresselhaus and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes, Elsevier, 1996.
- **2.** Yury Gogotsi, Carbon Nanomaterials, Taylor and Francis, 2006.
- **3. Francois Leonard,** The Physics of Carbon Nanotube Devices, Elsevier, 2008.
- 4. Anke Krueger, Carbon Materials and Nanotechnology, Wiley-VCH, 2010.
- 5. D.R. Askeland, P.P. Phule, W.J. Wright, The Science and Engineering of Materials, 6th ed.,

- Cengage Learning, 2010.
- 6. **Jamie H. Warner, Franziska Schäffel, Mark H. Rümmeli,** Graphene: Fundamentals and emergent applications, Elsevier, 2013.
- 7. **T. Pradeep**, NANO: The Essentials- Understanding Nanoscience and Nanotechnology, McGraw Hill Education, 2017.
- 8. **Deborah D L Chung**, Carbon Materials: Science and Applications, World Scientific, 2019.

Experimental Techniques in Nuclear and Particle Physics

Scheme Version:	Name of the subject:	L	T	P	C	Semester:	Contact hours per week: 3+1		
2022-24	Experimental Techniques in Nuclear and Particle Physics	3	1	0	4	IV (2 nd Year)	Total Hours: 60=45+15		
Subject Code:	Applicable to	Evalu		30	Exami	nation Durati	on:3 hours		
SBS PHY 01	Programs:	ation	CIE	Marks					
406 DCEC 3104	M.Sc. Physics	(Total		70	Prerec	uisite of Cour	se: Basics of		
3104		Marks : 100)	TEE	Marks	1	Nuclear and Particle Physics			
Course	This course is intended to familiarize the M.Sc. students to the experimental techniques								
Description	used in the fields of nuclear physics and particle physics. Various detection techniques will be introduced followed by a description of on-detector and off-detector electronics.								
Course Objectives	 Get knowledge about various experimental techniques used in the fields of nuclear physics and particle physics. To get familiar with various detector systems and related electronics. 								
	After completion of	of this cou	rse, students	would be a	able to:				
Course Outcomes	CO406D.1. Get knowledge about different types of radiations & their interaction with matter.								

	COURSE SYLLABUS							
Unit No.	Content of Each Unit	Hours of Each Unit						
1	Radiation interactions: Nuclear processes in radioactive sources: types of radiations & radiation sources; Interaction of gamma-rays, electrons, heavy charged particles, neutrons, neutrinos and other particles with matter. Radiation protection, Biological effects of radiation, radiation monitoring.	15						
2	Detection of radiations: General properties of Radiation detectors, energy resolution, detection efficiency and dead time. Gas-filled detectors: Ionization chamber, Proportional counters, position-sensitive proportional counters, Multiwire proportional chambers, Drift chamber, Time projection chamber. Scintillation detector, Phoswich detectors, Cherenkov detector. Semiconductor detectors. Detection of fast and slow neutrons - nuclear reactions for neutron detection. General Background and detector shielding.	15						
3	Detector electronics: Electronics for pulse signal processing, CR-(RC) ⁿ and delay-line pulse shaping, pole-zero cancellation, baseline shift andrestoration, preamplifiers, overload recovery and pileup, Linear amplifiers, single-channel analyser, analog-to-digital converters, multichannel analyzer. Basic considerations in time measurements; Walk and jitter, Time pickoff methods, time-to- amplitude converters, Systems for fast timing, fast-slow coincidence, and particle identification, NIM and CAMAC instrumentation standards and data acquisition system.	15						
4	Experimental Facilities: Detector systems for heavy-ion reactions: Large neutron detector array, gamma and charge particle detector arrays, electron spectrometer, heavy-ion reaction analysers, nuclear lifetime measurements (DSAM and RDM techniques), production of radioactive ion beams. Detector systems for high energy experiments: basics of Collider physics, Modern Hybrid experiments-CMS and ALICE.	15						

- 1. **W.R. Leo,** Techniques for Nuclear and Particle Physics Experiments, Springer, Berlin Heidelberg, 2nd Edition, 1994.
- 2. **Konrad Kleinknecht**, Detectors for particle radiation, Cambridge University Press, 1999.
- 3. **Richard Fernow**, Introduction to Experimental Particle Physics, Cambridge University Press, 2001.
- 4. <u>Glenn F. Knoll</u>, Radiation Detection and Measurement, John Wiley & Sons, 4th Edition, 2010.

Astronomy Laboratory

Scheme Version:	Name of the subject:	L	T	P	С	Semester:	Contact Hours	
2022-24	Astronomy Laboratory					IV(^{2nd}	per Week: 4	
	Zusozutory	0	0	8	4	Year)	Total Hours: 60	
Subject Code: SBS	Applicable to Programs:	Evalu ation	CIE	30 Marks	Exam hours	ination Dura	ation: 3	
PHY 01 407 DCEC 0084	M.Sc. Physics	(Total Mark s: 100)	TEE	70 Marks	to Ast	equisite: Inti cronomy and physics	roduction	
Course Description	This course shall astronomy first-h		ding the too	ls and kno	ow-how	to apply the p	principles of	
Course Objectives	The aim of this course to make students aware about different softwares (e.g. stellarium etc.) available to simulate night sky and observe astronomical phenomenon.							
Course Outcomes	On completion of the course, student would be able to CO407D.1: become familiar with astronomical coordinate system CO407D.2: Study the spectrum of celestial objects CO407D.3: observe the distance of planets							
	CO407D.4: obs		roper motion					
Unit No.			nt of Each			Hou	rs of Each Unit	
1	Getting to know Experiment 1 : T Experiment 2: Be Experiment 3: Re	15						
2	Spectral Analysis Experiment 4: St		lar spectrum	1			15	

	Experiment 5: Spectral classification of stars	
	Experiment 6: Extracting position of a star	
	Stellar Motions:	
	Experiment 7: Cepheid Variables	
	Experiment 8: To measure the Proper Motion of Barnard's	
3	Star	15
	Experiment 9: Circumpolar Star	
	Stellar Distances :	
	Experiment 10: Colour Magnitude Diagram	
4	Experiment 11:Orbital Inclination	15
	Experiment 12: Planetary Distances	
	Experiment 13: Distance to the Moon	
 	D. C	

References

- 1. http://www3.gettysburg.edu/~marschal/clea/Vireo.html
- 2. https://astro.unl.edu/vlabs/
- 3. http://va-iitk.vlabs.ac.in/
- 4. https://www.astro.indiana.edu/catyp/minilabs.html
- 5. https://depts.washington.edu/naivpl/content/welcome-virtual-planetary-laboratory

VACUUM SCIENCE AND THIN FILM TECHNOLOGY

Version: Subject: Vacuum Science and Thin Film Technology Subject Code: SBS PHY 01 408 DCEC 3104 M.Sc. Physics	Evaluation (Total Marks): 100	1 CIE TEE	0 30 Marks 70 Marks	hour		hours per week: 3+1 Total Hours: 45+15				
2022-24 and Thin Film Technology Subject Code: SBS PHY 01 Applicable to Programs:	Evaluation (Total Marks): 100	CIE	30 Marks 70	Exan hour	(2 nd Year) nination Dura s	week: 3+1 Total Hours: 45+15				
2022-24 and Thin Film Technology Subject Code: SBS PHY 01 Applicable to Programs:	Evaluation (Total Marks): 100	CIE	30 Marks 70	Exan hour	(2 nd Year) nination Dura s	3+1 Total Hours: 45+15				
Subject Code: SBS PHY 01 Technology Applicable to Programs:	Evaluation (Total Marks): 100	CIE	30 Marks 70	Exan hour	(2 nd Year) nination Dura s	Total Hours: 45+15				
Subject Code: Applicable to Programs:	Evaluation (Total Marks): 100	CIE	30 Marks 70	Exan hour	(2 nd Year) nination Dura s	Hours: 45+15				
SBS PHY 01 Programs:	(Total Marks): 100		Marks 70	hour	nination Dura s	45+15				
SBS PHY 01 Programs:	(Total Marks): 100		Marks 70	hour	s					
SBS PHY 01 Programs:	(Total Marks): 100		Marks 70	hour	s	tion: 3				
SBS PHY 01 Programs:	(Total Marks): 100		Marks 70	hour	s					
SBS PHY 01	Marks): 100	TEE	70							
408 DCEC 3104 M.Sc. Physics	,	TEE	-	Pre-	ii.t.a. of a.a.					
	of the course				requisite of co	urse:				
Course The central objective	01 1110 001100	is to pr	The central objective of the course is to provide basic understanding of physics and							
Description technology behind thin	n film growth.	•				. •				
	designs and case studies in technological areas of current interest will be discussed.									
	e not stand the dam tandamental to specially, manually, at significant,									
Objectives or using vacuu	im systems. king principles	and limi	itations of	numna	governo and a	thor				
Know the work vacuum system		and min	itations of	pumps	, gauges, and o	ulei				
•	gn concepts inv	olved in	matching	equipr	nent and instru	mentation				
to applications	S.									
Course On completion of this	course, student	will lear	n:							
Outcomes: CO408.1 Understand	the Kinetic T	heory of	f Gases, n	nean fi	ree path and t	he physical				
concepts behind the th		•			pani and i	iro prijstom				
Construction and the										
CO408.2 Understand t	the kinetic theor	ry of nuc	cleation, gr	owth a	nd diffusion pl	nenomenon				
CO408.3 Understand	the basics of va	acuum s	cience and	techno	ology, Vacuum	pumps and				
gauges and use of vari	ious vacuum ba	ased tecl	nniques for	r devel	opment of thin	film-based				
materials, structures, a	nd plasma devi	ces and	systems.							
CO408.4 Familiarize	with the physi	ical con	cepts of li	thograj	phy behind the	e solid-state				
electronics devices des	sign patterns.									
CO408.5 Understand of their structural, morph	-		-							

	properties.						
	CO408.6 Design protocols for thin film deposition, characterization and various applications.						
	COURSE SYLLABUS						
Unit No.	Content of Each Unit	Hours of Each Unit					
1.	The physics of gases and vacuum systems:	15					
	Gas kinetics, Maxwell-Boltzmann distribution, molecular impingement flux, Knudsen equation, mean free path, transport properties, Evaporation: thermodynamics of evaporation, evaporation rate, alloys, compounds, sources, deposition monitoring techniques, Deposition: adsorption, surface diffusion, nucleation, structure development, interfaces, stress, adhesion.						
2.	Vacuum Science and deposition techniques: Basics of vacuum science, creation of vacuum usingdifferent pumps, vacuum gauges, vacuum leak detection, helium leak detector, residual gas analyzer. Thermal evaporation and electron beam evaporation system, idea of DC and R.F. sputtering system, Methods of producing thin films using Physical vapour deposition, Chemicals Vapour Deposition and spray pyrolysis methods, Molecular Beam Epitaxy and Laser Ablation methods for thin film deposition.	15					
3.	Lithography: Importance of lithography, Basic steps of lithography, Substrate preparation methods, Positive photoresist, Negative photoresist, photoresist Processing, photoresist coating methods, Resist Exposure (single, bi-layer and multi-level photoresist exposure) and Resist Development, soft backing and hard baking, Etching, Types of lithography, Photolithography, Idea of electron beam lithography, Idea of an X-ray lithography, Interference Lithography, Step Growth, Nano imprint, Self-Assembly, Nano templates.	15					

4.	Thin Film Analysis and Applications:	15
	Film analysis: structure-thickness, topography, inhomogeneity, crystallography, bonding, point defects, composition, optical, electrical and mechanical behavior of thin films. Thin film technology applications: optical windows, integrated circuits, micro-electro-optomechanical systems and photovoltaics.	

REFERENCE BOOKS

- 1. Chopra, K.L., Thin Film Phenomena, Robert E. Krieger publishing, 1969.
- 2. Smith, D.L., Thin-Film Deposition: Principles and Practice, McGraw-Hill, 1995.
- 3. Hummel, R. E. and Guenther, K.H., Handbook of Optical Properties: Thin Films for Optical Coatings, Volume 1, CRC Press, 1995.
- 4. Ohring, M., The Materials Science of Thin Films, 2nd Edition, Academic press, 2002.
- 5. Soriaga, M.P., Stickney, J., Bottomley, L.A., and Kim Y.G, Thin Films: Preparation, Characterization, Applications, Springer Science 2011.

Minor Research Project

Scheme Version:	Name of the subject: Minor Project		L	T	P	C	Semester:	Contact hours per week: 3+1	
2022-24			0	0		4	IV (2 nd Year)	Total Hours: 45+15	
Subject Code: SBS PHY 01 409 DCEC	Applicable to Programs:		Evalu ation	CIE	00	Exam	Examination Duration: 3 hours		
00016	M.Sc. Physics		(Total Marks : 100)	TEE	100 Marks	Prerequisite of Course: None			
Course Description		The minor project topic will be decided on the basis of student skill and interest. On mentor will be allocated to student for discussion and direction.							
Course Objectives	Student will have idea about the literature survey and how to write an overview.								
Course Outcomes	CO409.3	After completion of this project, students will be able to learn about: CO409.1. Basic of literature review CO409.2. Learn how to do research							
	CO409.2. Learn how to do research CO409.3. How to write a report. CO409.4. Present the work done in minor project.								

Evaluation: The evaluation will be done by a Departmental committee constituted by Head of the Department. Committee will award the grades based on quality of project work done and presentation made by student.

INTRODUCTION TO HYDROGEN ENERGY SYSTEMS

Scheme Version: 2022-24	Name of the Subject: Introduction to	L	Т	P	С	Semester:	Contact hours per	
2022-24	Hydrogen Energy Systems	3	1	0	4	IV (2 nd Year)	week: 4 Total Hours: 60=45+15	
Subject Code: SBS PHY 01 410	Applicable to Programs:	Evaluation (Total	CIE	30 Marks	Exan	Examination Duration: 3 hours		
DCEC 3104	M.Sc. Physics	Marks): 100	TEE	70 Marks	Pre-requisite of course: None			
Course	To introduce the concept of energy generation from Hydrogen as future fuel. To enlighten the							
Description Course	knowledge of production, storage and transportation. This course aim is to give insight of hydrogen production, storage and their application, as a							
Objectives	future source of energy.							
Course	On completion of this course, student will learn:							
Outcomes:	CO410.1 The Course will greate experences among students about Non Conventional sources of							
	CO410.1 The Course will create awareness among students about Non-Conventional sources of energy technologies and provide adequate inputs on a variety of issues.							
	CO410.2 There is very good scope for saving energy, by using it judiciously. During these days							
	of saving the environment, energy conservation plays a vital role. The government of India has							
	passed Energy Conservation Act-2003 and Energy Conservation Building Code (ECBC-2007), in							
	this regard. By observing energy efficient measures there is tremendous scope of saving energy in							
	industry, built environment, transport etc.							
	CO410.3 To teach fundamentals of hydrogen energy as energy systems, production processes,							
	separation and utilization that is necessary for taking some important elective subjects as well as to							
	increase the potential for job opportunities in automotive industries and hydrogen production &its							
	infrastructure development related sectors as about 40% energy is being consumed by automotive							
	sectors. COA10 4 This course has chiestings to alchomate PC students recording current transfe in hydrogen.							
	CO410.4 This course has objectives to elaborate PG students regarding current trends in hydrogen energy architecture and following key concepts such as hydrogen storage and hydrogen sensing.							
	CO410.5. To Provide adequate inputs on a variety of issues relating to safety guidelines, codes							
	and standards in hydrogen energy systems.							
	COURSE SYLLABUS							
Unit No.	Content of Each Unit				Hours of	Each Unit		
5.	Hydrogen energy pathways:[Course Outcome (s): CO410.1 &						15	
	CO410.2] Hydrogen Energy Pathways- Properties of hydrogen, Global and							
	Indian hydrogen energy scenario, need for hydrogen, current uses,							
	environmentally sustainable hydrogen, hydrogen as part of Climate							
	Neutral Strategy. Hydrogen for mobility applications & vehicles, Overview of Hydrogen utilization: I.C. Engines, gas turbines, hydrogen burners, power plant, refineries, domestic and marine							
	applications.							

6.	Hydrogen production and separation: [Course Outcome (s): 15			
	CO410.3] Hydrogen Production-Production of hydrogen from			
	hydrocarbons-oxidative and nonoxidative processes, coal.			
	Hydrogen production using nuclear energy and renewables- wind,			
	biomass, solar.			
	Hydrogen separation and purification-Pressure swing			
	adsorption, Solvent based absorption, membrane separation,			
	cryogenic separation etc.			
7.	Hydrogen storage: [Course Outcome (s): CO410.4]	15		
	Hydrogen Storage -Types of hydrogen storage (Gaseous, Liquid,			
	Solid hosts), Gibbs Phase Rule, Pressure-Composition-	on-		
	Temperature plots; Van't Hoff plots for absorption desorption			
	enthalpies, Gravimetric capacities, Hysteresis in cycling, Joule-			
	Thomson Effect, Non-ideal treatment of hydrogen gas Kinetics:			
	Hydrogen absorption/desorption phenomena (chemisorption,			
	nucleation and growth and diffusion), Kinetic models, Kissinger			
	analysis for activation energy estimation, Hydrogen adsorption			
	isotherms-BET, design and applications of storage systems,			
	materials for hydrogen storage, Hydrogen storage for automobiles.			
8.	Hydrogen sensing and safety: [Course Outcome (s): CO410.4&	15		
	CO410.5]			
	Hydrogen sensing- Traditional methods of hydrogen sensing using			
	thermal conductivity measurements or Gas Chromatography, Mass			
	Spectroscopy or laser gas analysis; Solid state sensors- their			
	working principle and applications at industrial scale.			
	Hydrogen Safety-Physiological, physical and chemical hazards,			
	hydrogen properties associated with hazards, Hazard spotting,			
	evaluation and safety guidelines, Hydrogen safety codes and			
	standards. Hydrogen safety barrier diagram, risk analysis, safety in			
	handling and refueling station, safety in vehicular and stationary			
	applications, fire detecting system, safety management.			

REFERENCE BOOKS

- 7. F. Peter, Fuels and Fuel Technology, A.Wheatan & Co. Ltd., 1st edition, 1965.
- 8. JOM Bockris, Energy options: Real Economics and the Solar Hydrogen System, Halsted Press and London publisher, 1980.
- 9. S. Sarkar, Fuels and Combustion, Orient Longman, 2nd edition, 1990.
- 10. J Twidell and T Weir, Renewable Energy Resources, Taylor and Francis (Ed), New York, USA, 2006.
- 11. J. G. Speight, The chemisty & Technology of Petroleum, 4th edition, CRC Press, 2006.
- 12. M. Ball and M. Wietschel, The Hydrogen Economy Opportunities and Challenges, Cambridge University Press, 2009.
- 13. J.G. Speight and B. Ozum, Petroleum Refining Process, CRC Press, 2009.
- 14. W. Lyons, Working Guide to Petroleum and Natural Gas Production Engineering, Elsevier Inc, 2009.
- 15. Ke Liu, C. Song and V. Subramani, Hydrogen and Syngas Production and Purification Technologies, John Wiley & Sons, 2010.
- 16. M.K.G. Babu, K.A. Subramanian, Alternative Transportation Fuels: Utilization in Combustion Engines, CRC Press, 2013.
- 17. J. G. Speight, The Chemistry and Technology of Coal, CRC Press, 2013.

9. TEACHING-LEARNING PROCESS

- Lectures
- Discussions
- Simulations
- Role Playing
- Participative Learning
- Interactive Sessions
- Seminars
- Research-based Learning/Dissertation or Project Work
- Technology-embedded Learning

10. IMPLEMENTATION OF BLENDED

LEARNING

Blended Learning is a pedagogical approach that combines face to-face classroom methods with computer-mediated activities in the process of teaching and learning. It implies nice blend of face-to-face and online activities to make the learning processes more interesting and engaging. It focuses on integration of traditional classroom activities and innovative ICT-enabled strategies. It emphasises student-centric learning environment where the teacher is the facilitator for productive and measurable learning outcomes. It optimises and compliments the face to face learning, giving ample freedom and flexibility to the students and teachers to access and explore the wide range of open-access sources such as video lectures, podcasts, recordings and articles through digital platforms. It gives freedom and autonomy to the teachers in selection of appropriate digital platforms, resources and time-slots to complement and supplement face to face learning. The Blended Learning doesn't undermine the role of the teacher, rather it gives him/her an opportunity to explore the unexplored in accordance with the requirements of the curriculum.

Key features of Blended Learning

- **Student-Centric Pedagogical Approach** focusing on flexibility in timing, quality content, needs and interests of students and freedom to study through the mode of his/her choice:
- Freedom to Select variety of mediums and techniques;
- Increased student engagement in learning;
- Enhanced teacher and student interaction;
- Improved student learning outcomes;
- More flexible teaching and learning environment;
- More responsive for self and continuous learning;
- Better opportunities for experiential learning;

- Increased learning skills;
- Greater access to information, improved satisfaction and learning outcomes.

Note: Resolution no (c) as per minutes circulated by VC office: It was resolved that Blended Learning with 40% component of online teaching and 60% face to face classes for each programme, be adopted.

11. ASSESSMENT AND EVALUATION

- Continuous Comprehensive Evaluation at regular after achievement of each Course-level learning outcome
- Formative Assessment on the basis of activities of a learner throughout the programme instead of one-time assessment
- Oral Examinations to test presentation and communication skills
- Open Book Examination for better understanding and application of the knowledge acquired
- Group Examinations on Problem solving exercises
- Seminar Presentations
- Review of Literature
- Collaborative Assignments

12. KEYWORDS

- LOCF
- NEP-2020
- Blended Learning
- Face to face (F to F) Learning
- Programme Outcomes
- Programme Specific Outcomes
- Course-level Learning Outcomes
- Postgraduate Attributes
- Learning Outcome Index
- Formative Assessment and Evaluation
- Comprehensive and Continuous Evaluation

13. REFERENCES

- National Education Policy-2020. https://www.education.gov.in/sites/upload_files/mhrd/files/NEP_Final_English_0.pdf
- The draft subject specific LOCF templates available on UGC website. https://www.ugc.ac.in/ugc_notices.aspx?id=MjY5OQ==
- Draft Blended Mode of Teaching and Learning: Concept Note available on UGC website. https://www.ugc.ac.in/pdfnews/6100340 Concept-Note-Blended-Mode-of-Teaching-and-Learning.pdf